Abstract

The optical disk readout signals from ROM disks are presented by use of a rigorous three-dimensional vector diffraction method. The optical disk is modeled as a crossed metal grating without restriction on the form of the information marks, and the permittivity of the metal is taken into account. The diffracted field from the disk is obtained by means of decomposing the focused incident beam into a spectrum of plane waves and then calculating the diffracted plane waves for each respective incident component. The readout signal is obtained by integration of the energy-flux density of the diffracted field according to the detection scheme of the optical disk system. A typical digital versatile disk (DVD) system is applied with this theory, and the result is far from that of scalar diffraction theory.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Korpel, “Simplified diffraction theory of the video disk,” Appl. Opt. 17, 2037–2042 (1978).
    [CrossRef] [PubMed]
  2. H. H. Hopkins, “Diffraction theory of laser read-out systems for optical video discs,” J. Opt. Soc. Am. 69, 4–24 (1979).
    [CrossRef]
  3. V. B. Jipson, C. C. Williams, “Two-dimensional modeling of an optical disk readout,” Appl. Opt. 22, 2202–2209 (1983).
    [CrossRef] [PubMed]
  4. P. Sheng, “Theoretical consideration of optical diffraction from RCA VideoDisc signal,” RCA Rev. 39, 512–555 (1978).
  5. Z. Zhou, Y. Ruan, “Optimization of information pit shape and read-out system in read-only and write-once optical storage systems,” Appl. Opt. 27, 728–731 (1988).
    [CrossRef] [PubMed]
  6. J. Pasman, “Vector theory of diffraction,” in Principles of Optical Disc Systems, G. Bouwhis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. S. Immink, eds. (Hilger, Bristol, UK, 1985), pp. 88–124.
  7. A. S. Lapchuk, A. A. Kryuchin, V. A. Klimenko, “Three-dimensional vector diffraction analysis for optical disk,” in International Conference on Optical Storage, Imaging, and Transmission of Information, V. V. Petrov, S. V. Svechnikov, eds., SPIE Proc.3055, 37–42 (1997).
  8. K. Otaki, H. Osawa, H. Ooki, J. Aaito, “Polarization effect on signal from optical ROM using solid immersion lens,” Jpn. J. Appl. Phys. Part 1 39, 698–706 (2000).
    [CrossRef]
  9. K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. Part 1 38, 6743–6749 (1999).
    [CrossRef]
  10. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989).
    [CrossRef]
  11. E. Wolf, “Electromagnetic diffraction in optical systems: an integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).
    [CrossRef]
  12. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems: structure of the image field in an aplantic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
    [CrossRef]
  13. D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1984), Vol. 21, pp. 37–43.
  14. G. Bao, D. C. Dobson, J. A. Cox, “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029–1042 (1995).
    [CrossRef]
  15. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
    [CrossRef]
  16. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
    [CrossRef]
  17. M. G. Moharam, D. A. Pomment, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigrous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  18. G. Granet, “Analysis of diffraction by surface-relief crossed gratings with the Chandezon method: application to multilayered cross gratings,” J. Opt. Soc. Am. A 15, 1121–1131 (1998).
    [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Appen. III.
  20. L. Yongchang, L. Weiqiang, Optics of Thin Films (National Defence Industrial Press, Beijing, 1990), Chap. 11.

2000

K. Otaki, H. Osawa, H. Ooki, J. Aaito, “Polarization effect on signal from optical ROM using solid immersion lens,” Jpn. J. Appl. Phys. Part 1 39, 698–706 (2000).
[CrossRef]

1999

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. Part 1 38, 6743–6749 (1999).
[CrossRef]

1998

1995

1993

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

1989

1988

1985

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

1983

1979

1978

P. Sheng, “Theoretical consideration of optical diffraction from RCA VideoDisc signal,” RCA Rev. 39, 512–555 (1978).

A. Korpel, “Simplified diffraction theory of the video disk,” Appl. Opt. 17, 2037–2042 (1978).
[CrossRef] [PubMed]

1959

E. Wolf, “Electromagnetic diffraction in optical systems: an integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems: structure of the image field in an aplantic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Aaito, J.

K. Otaki, H. Osawa, H. Ooki, J. Aaito, “Polarization effect on signal from optical ROM using solid immersion lens,” Jpn. J. Appl. Phys. Part 1 39, 698–706 (2000).
[CrossRef]

Bao, G.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Appen. III.

Cox, J. A.

Dobson, D. C.

Gaylord, T. K.

Granet, G.

Grann, E. B.

Hopkins, H. H.

Jipson, V. B.

Kaneko, M.

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. Part 1 38, 6743–6749 (1999).
[CrossRef]

Klimenko, V. A.

A. S. Lapchuk, A. A. Kryuchin, V. A. Klimenko, “Three-dimensional vector diffraction analysis for optical disk,” in International Conference on Optical Storage, Imaging, and Transmission of Information, V. V. Petrov, S. V. Svechnikov, eds., SPIE Proc.3055, 37–42 (1997).

Korpel, A.

Kryuchin, A. A.

A. S. Lapchuk, A. A. Kryuchin, V. A. Klimenko, “Three-dimensional vector diffraction analysis for optical disk,” in International Conference on Optical Storage, Imaging, and Transmission of Information, V. V. Petrov, S. V. Svechnikov, eds., SPIE Proc.3055, 37–42 (1997).

Lapchuk, A. S.

A. S. Lapchuk, A. A. Kryuchin, V. A. Klimenko, “Three-dimensional vector diffraction analysis for optical disk,” in International Conference on Optical Storage, Imaging, and Transmission of Information, V. V. Petrov, S. V. Svechnikov, eds., SPIE Proc.3055, 37–42 (1997).

Li, L.

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

Mansuripur, M.

Maystre, D.

D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1984), Vol. 21, pp. 37–43.

Moharam, M. G.

Nakaoki, A.

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. Part 1 38, 6743–6749 (1999).
[CrossRef]

Ooki, H.

K. Otaki, H. Osawa, H. Ooki, J. Aaito, “Polarization effect on signal from optical ROM using solid immersion lens,” Jpn. J. Appl. Phys. Part 1 39, 698–706 (2000).
[CrossRef]

Osawa, H.

K. Otaki, H. Osawa, H. Ooki, J. Aaito, “Polarization effect on signal from optical ROM using solid immersion lens,” Jpn. J. Appl. Phys. Part 1 39, 698–706 (2000).
[CrossRef]

Otaki, K.

K. Otaki, H. Osawa, H. Ooki, J. Aaito, “Polarization effect on signal from optical ROM using solid immersion lens,” Jpn. J. Appl. Phys. Part 1 39, 698–706 (2000).
[CrossRef]

Pasman, J.

J. Pasman, “Vector theory of diffraction,” in Principles of Optical Disc Systems, G. Bouwhis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. S. Immink, eds. (Hilger, Bristol, UK, 1985), pp. 88–124.

Pomment, D. A.

Richards, B.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems: structure of the image field in an aplantic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Ruan, Y.

Saito, K.

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. Part 1 38, 6743–6749 (1999).
[CrossRef]

Sheng, P.

P. Sheng, “Theoretical consideration of optical diffraction from RCA VideoDisc signal,” RCA Rev. 39, 512–555 (1978).

Weiqiang, L.

L. Yongchang, L. Weiqiang, Optics of Thin Films (National Defence Industrial Press, Beijing, 1990), Chap. 11.

Williams, C. C.

Wolf, E.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems: structure of the image field in an aplantic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems: an integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Appen. III.

Yongchang, L.

L. Yongchang, L. Weiqiang, Optics of Thin Films (National Defence Industrial Press, Beijing, 1990), Chap. 11.

Zhou, Z.

Appl. Opt.

J. Mod. Opt.

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys. Part 1

K. Otaki, H. Osawa, H. Ooki, J. Aaito, “Polarization effect on signal from optical ROM using solid immersion lens,” Jpn. J. Appl. Phys. Part 1 39, 698–706 (2000).
[CrossRef]

K. Saito, A. Nakaoki, M. Kaneko, “A simulation of magneto-optical signals in near-field recording,” Jpn. J. Appl. Phys. Part 1 38, 6743–6749 (1999).
[CrossRef]

Proc. IEEE

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Proc. R. Soc. London Ser. A

E. Wolf, “Electromagnetic diffraction in optical systems: an integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems: structure of the image field in an aplantic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

RCA Rev.

P. Sheng, “Theoretical consideration of optical diffraction from RCA VideoDisc signal,” RCA Rev. 39, 512–555 (1978).

Other

J. Pasman, “Vector theory of diffraction,” in Principles of Optical Disc Systems, G. Bouwhis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. S. Immink, eds. (Hilger, Bristol, UK, 1985), pp. 88–124.

A. S. Lapchuk, A. A. Kryuchin, V. A. Klimenko, “Three-dimensional vector diffraction analysis for optical disk,” in International Conference on Optical Storage, Imaging, and Transmission of Information, V. V. Petrov, S. V. Svechnikov, eds., SPIE Proc.3055, 37–42 (1997).

D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1984), Vol. 21, pp. 37–43.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Appen. III.

L. Yongchang, L. Weiqiang, Optics of Thin Films (National Defence Industrial Press, Beijing, 1990), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Model of optical system.

Fig. 2
Fig. 2

Model of optical disk and its pit.

Fig. 3
Fig. 3

Calculated CA readout signal as a function of scanning position.

Fig. 4
Fig. 4

Readout signal as a function of concave pit depth.

Fig. 5
Fig. 5

Readout signal as a function of convex pit depth.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

e0p=a0px exp-jk0l0p,
x, y=n12  outside pits,  =n22  inside pits,
eip= uisexp-jk1sxx+syy+szzdsxdsy,
uis=fa0psnps1/2jλ1n1 cosθ1/2×axsx+aysy+azsz,
axs=cosθ+sin2ϕ1-cosθ,
ays=cosθ-1sinϕcosϕ,
azs=-sinθcosϕ.
eincs, pdsxdsy=uisdsxdsy exp-jk1sxx+syy+szz.
e1s, p=eincs, p+m,nud1s, m, nexp-jk1s1xmnx+s1ymny-s1zmnz,
e2s, p=m,nud2s, m, nexp-jk2s2xmnx+s2ymny+s2zmnz,
hls, p=j/ωμ0×els, p,  l=1, 2.
slymn=syk1/kl-2nπ/Pykl,  slzmn=1-slxmn2-slymn21/2,  l=1, 2.
ed1s, p=m,nud1s, m, nexp-jk1s1xmnx+slymny-slzmnz.
ed1p= m,nud1s, m, nexp-jk1slxmnx+slymny-s1zmnzdsxdsy.
ed1p= udsexp-jk1sxx+syy-szzdsxdsy.
uds= m,nud1r, m, nδs-r1mndrxdry.
hd1p=j/ωμ0×ed1p.
Sdxc, yc=pD12 Reed1p×hd1*p·ndσp.
ed1p=2πj cosθk1r exp-jk1rudr/r.
Sdxc, yc=2π2k1ωμ00α02πudr/r·ud*r/r×cos2θsinθdϕdθ.

Metrics