Abstract

Three-dimensional optical topometry of technical surfaces becomes increasingly important for the control of industrial processes. However, the local reflectance of the surface of the investigated sample often varies within a wide range, making accurate measurements by fringe projection difficult. We demonstrate the use of a liquid-crystal spatial light modulator as the fringe-generating element in a standard stereo microscope. With this device the brightness of the projected patterns can be adapted pixelwise. This technique leads to a significant improvement of the results of our measurements with a phase-shifting algorithm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Leonhardt, U. Droste, H. J. Tiziani, “Microshape and rough-surface analysis by fringe projection,” Appl. Opt. 33, 7477–7488 (1994).
    [CrossRef] [PubMed]
  2. R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
    [CrossRef]
  3. R. Windecker, S. Franz, H. J. Tiziani, “Optical roughness measurements with fringe projection,” Appl. Opt. 38, 2837–2842 (1999).
    [CrossRef]
  4. R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
    [CrossRef]
  5. G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” F&M 106, 612–615 (1998).
  6. T. Wilson, ed., Confocal Microscopy (Academic, London, 1990), Chaps. 1–3.
  7. D. Steudle, M. Wegner, H. J. Tiziani, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39, 32–39 (2000).
    [CrossRef]
  8. G. S. Kino, S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  9. P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
    [CrossRef]
  10. M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspectionand Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
    [CrossRef]
  11. M. Schönleber, E. U. Wagemann, H. J. Tiziani, “Shape deviation measurement with enhanced depth using adapted fringe projection and multiple exposed holograms,” in Proceedings of the 31st ISATA Conference on Advanced Manufacturing/Innovation Management, Düsseldorf (International Symposium on Automotive Technology and Automation, Epsom, Surrey, UK, 1998) pp. 71–84.
  12. M. Schönleber, “Optische Inspektion mit Flüssigkristall-Lichtmodulatoren,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, 1999).
  13. R. W. Malz, “Codierte Lichtstrukturen für 3-D-Messtechnik und Inspektion,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, 1992).
  14. J. Schmit, K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642–5649 (1996).
    [CrossRef] [PubMed]
  15. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3269–3270 (1989).
    [CrossRef]

2000 (2)

D. Steudle, M. Wegner, H. J. Tiziani, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39, 32–39 (2000).
[CrossRef]

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

1999 (1)

1998 (1)

G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” F&M 106, 612–615 (1998).

1997 (1)

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

1996 (1)

1995 (1)

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

1994 (1)

1990 (1)

1989 (1)

J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3269–3270 (1989).
[CrossRef]

Chim, S.

Creath, K.

de Groot, P.

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Deck, L.

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Droste, U.

Fleischer, M.

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

Frankowski, G.

G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” F&M 106, 612–615 (1998).

Franz, S.

Gerber, J.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Huntley, J. M.

J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3269–3270 (1989).
[CrossRef]

Kino, G. S.

Kowarschik, R.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Kühmstedt, P.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Leonhardt, K.

Malz, R. W.

R. W. Malz, “Codierte Lichtstrukturen für 3-D-Messtechnik und Inspektion,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, 1992).

Notni, G.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Schmit, J.

Schönleber, M.

M. Schönleber, “Optische Inspektion mit Flüssigkristall-Lichtmodulatoren,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, 1999).

M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspectionand Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
[CrossRef]

M. Schönleber, E. U. Wagemann, H. J. Tiziani, “Shape deviation measurement with enhanced depth using adapted fringe projection and multiple exposed holograms,” in Proceedings of the 31st ISATA Conference on Advanced Manufacturing/Innovation Management, Düsseldorf (International Symposium on Automotive Technology and Automation, Epsom, Surrey, UK, 1998) pp. 71–84.

Schreiber, W.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Steudle, D.

D. Steudle, M. Wegner, H. J. Tiziani, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39, 32–39 (2000).
[CrossRef]

Tiziani, H. J.

D. Steudle, M. Wegner, H. J. Tiziani, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39, 32–39 (2000).
[CrossRef]

R. Windecker, S. Franz, H. J. Tiziani, “Optical roughness measurements with fringe projection,” Appl. Opt. 38, 2837–2842 (1999).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

K. Leonhardt, U. Droste, H. J. Tiziani, “Microshape and rough-surface analysis by fringe projection,” Appl. Opt. 33, 7477–7488 (1994).
[CrossRef] [PubMed]

M. Schönleber, E. U. Wagemann, H. J. Tiziani, “Shape deviation measurement with enhanced depth using adapted fringe projection and multiple exposed holograms,” in Proceedings of the 31st ISATA Conference on Advanced Manufacturing/Innovation Management, Düsseldorf (International Symposium on Automotive Technology and Automation, Epsom, Surrey, UK, 1998) pp. 71–84.

M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspectionand Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
[CrossRef]

Wagemann, E. U.

M. Schönleber, E. U. Wagemann, H. J. Tiziani, “Shape deviation measurement with enhanced depth using adapted fringe projection and multiple exposed holograms,” in Proceedings of the 31st ISATA Conference on Advanced Manufacturing/Innovation Management, Düsseldorf (International Symposium on Automotive Technology and Automation, Epsom, Surrey, UK, 1998) pp. 71–84.

Wegner, M.

D. Steudle, M. Wegner, H. J. Tiziani, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39, 32–39 (2000).
[CrossRef]

Windecker, R.

R. Windecker, S. Franz, H. J. Tiziani, “Optical roughness measurements with fringe projection,” Appl. Opt. 38, 2837–2842 (1999).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

Appl. Opt. (5)

F&M (1)

G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” F&M 106, 612–615 (1998).

J. Mod. Opt. (1)

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Opt. Eng. (3)

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

D. Steudle, M. Wegner, H. J. Tiziani, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng. 39, 32–39 (2000).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

Other (5)

T. Wilson, ed., Confocal Microscopy (Academic, London, 1990), Chaps. 1–3.

M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspectionand Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
[CrossRef]

M. Schönleber, E. U. Wagemann, H. J. Tiziani, “Shape deviation measurement with enhanced depth using adapted fringe projection and multiple exposed holograms,” in Proceedings of the 31st ISATA Conference on Advanced Manufacturing/Innovation Management, Düsseldorf (International Symposium on Automotive Technology and Automation, Epsom, Surrey, UK, 1998) pp. 71–84.

M. Schönleber, “Optische Inspektion mit Flüssigkristall-Lichtmodulatoren,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, 1999).

R. W. Malz, “Codierte Lichtstrukturen für 3-D-Messtechnik und Inspektion,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Setup of the stereo microscope in principle

Fig. 2
Fig. 2

Principle of triangulation in the stereo microscope. The triangulation angle is β = 18°.

Fig. 3
Fig. 3

9-bit gray code with preceding bright and dark reference.

Fig. 4
Fig. 4

Sinusoidal fringes on a German 1-pfennig coin, partially overexposed.

Fig. 5
Fig. 5

Profile of the image shown in Fig. 4 at y = 5.0 m. Outside the number 1 the detected signal is partially saturated. Hence in these areas the fringe profile is no longer sinusoidal.

Fig. 6
Fig. 6

Unwrapped phase without brightness adaptation

Fig. 7
Fig. 7

Profile of unwrapped phase at y = 5.0 mm without brightness adaptation.

Fig. 8
Fig. 8

Brightness-adapted sinusoidal fringe mask with 1024 × 768 pixels and a fringe period of 12 pixels.

Fig. 9
Fig. 9

Sinusoidal fringes on object after brightness adaptation

Fig. 10
Fig. 10

Profile of the image in Fig. 9 at y = 5.0 mm. The modulation of the fringes is virtually constant over the total width of the object.

Fig. 11
Fig. 11

Unwrapped phase after brightness adaptation

Fig. 12
Fig. 12

Profile of unwrapped phase at y = 5.0 mm after brightness adaptation. Within the number 1 the unwrapped phase stays virtually unchanged. In formerly overexposed areas, noise is strongly reduced.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

IC=I0GSLMγ.
XCCDXSLM,i,
YCCDYSLM,i,
GSLM=frGSLM.
ICIC,max,
GSLMGSLM,min.
Φx, y=5I1-15I3+11I5-I7I0-11I2+15I4-5I6.

Metrics