Abstract

An integrated optical interferometer for direct detection of affinity reactions is presented. A modern version of a Young’s interferometer is built with a waveguide structure as beam splitter and as sensing element. Resistive waveguides were produced by plasma-enhanced chemical vapor deposition of silicon oxinitride. At the output of this device a fringe pattern is detected by a CCD line camera. The adsorption of molecules on top of the waveguides is observed with a detection limit of 750 fg/mm2. The resolvable variation of effective refractive index is 9 × 10-8.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  2. P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
    [CrossRef]
  3. A. Severs, R. Schasfoort, “Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles,” Biosens. Bioelectron. 8, 365–370 (1993).
    [CrossRef]
  4. Ph. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
    [CrossRef]
  5. P. Nellen, W. Lukosz, “Integrated optical input grating couplers as direct affinity sensors,” Biosens. Bioelectron. 8, 129–147 (1993).
    [CrossRef]
  6. D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 18–19, 581–586 (1994).
  7. A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
    [CrossRef]
  8. J. Piehler, A. Brandenburg, A. Brecht, E. Wagner, G. Gauglitz, “Characterization of grating couplers for affinity-based pesticide sensing,” Appl. Opt. 36, 6554–6562 (1997).
    [CrossRef]
  9. R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
    [CrossRef]
  10. P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
    [CrossRef]
  11. W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sens. Actuators A 25–27, 185–188 (1991).
  12. C. Stamm, W. Lukosz, “Integrated optical difference interferometer as biochemical sensor,” Sens. Actuators B 18–19, 183–187 (1994).
  13. C. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
    [CrossRef]
  14. D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
    [CrossRef]
  15. R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
    [CrossRef]
  16. A. Brandenburg, “Differential refractometry by an integrated optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).
  17. K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]
  18. T. Tamir, ed., Guided-Wave Optoelectronics, Vol. 26 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  19. J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759–1772 (1978).
    [CrossRef]
  20. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).
  21. R. Th. Kersten, “The prism-film coupler as precision instrument,” Opt. Acta 22, 503–513, 515–521 (1975).
  22. Y. Okamura, A. Miki, S. Yamamoto, “Observation of wave propagation in integrated optical circuits,” Appl. Opt. 25, 3405–3408 (1986).
    [CrossRef] [PubMed]
  23. “Internationale Tabelle der Brechzahlen von Saccharose-Lösungen bei 20 °C,” International Commission for Uniform Methods of Sugar Analysis (ICUMSA Publications Department, 1974 c/o British Sugar Technical Centre, Norwich Park, Colney, Norwich NR4 7UB, UK).
  24. U. Bilitewski, F. Bier, A. Brandenburg, “Immunobiosensors based on grating couplers,” in Affinity Biosensors: Techniques and Protocols, Vol. 7 of Methods in Biotechnology (Humana, Totowana, N.J., 1994).

1997 (2)

A. Brandenburg, “Differential refractometry by an integrated optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).

J. Piehler, A. Brandenburg, A. Brecht, E. Wagner, G. Gauglitz, “Characterization of grating couplers for affinity-based pesticide sensing,” Appl. Opt. 36, 6554–6562 (1997).
[CrossRef]

1996 (1)

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

1994 (2)

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 18–19, 581–586 (1994).

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as biochemical sensor,” Sens. Actuators B 18–19, 183–187 (1994).

1993 (7)

C. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[CrossRef]

P. Nellen, W. Lukosz, “Integrated optical input grating couplers as direct affinity sensors,” Biosens. Bioelectron. 8, 129–147 (1993).
[CrossRef]

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

A. Severs, R. Schasfoort, “Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles,” Biosens. Bioelectron. 8, 365–370 (1993).
[CrossRef]

1991 (1)

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sens. Actuators A 25–27, 185–188 (1991).

1989 (1)

1988 (2)

Ph. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

1986 (1)

1983 (1)

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1978 (1)

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

1975 (1)

R. Th. Kersten, “The prism-film coupler as precision instrument,” Opt. Acta 22, 503–513, 515–521 (1975).

Barner, R.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

Benjamins, J.

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Bier, F.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

U. Bilitewski, F. Bier, A. Brandenburg, “Immunobiosensors based on grating couplers,” in Affinity Biosensors: Techniques and Protocols, Vol. 7 of Methods in Biotechnology (Humana, Totowana, N.J., 1994).

Bilitewski, U.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

U. Bilitewski, F. Bier, A. Brandenburg, “Immunobiosensors based on grating couplers,” in Affinity Biosensors: Techniques and Protocols, Vol. 7 of Methods in Biotechnology (Humana, Totowana, N.J., 1994).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

Brandenburg, A.

A. Brandenburg, “Differential refractometry by an integrated optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).

J. Piehler, A. Brandenburg, A. Brecht, E. Wagner, G. Gauglitz, “Characterization of grating couplers for affinity-based pesticide sensing,” Appl. Opt. 36, 6554–6562 (1997).
[CrossRef]

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

U. Bilitewski, F. Bier, A. Brandenburg, “Immunobiosensors based on grating couplers,” in Affinity Biosensors: Techniques and Protocols, Vol. 7 of Methods in Biotechnology (Humana, Totowana, N.J., 1994).

Brecht, A.

Buckle, P.

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

Clerc, D.

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 18–19, 581–586 (1994).

Cronin, J.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

Cush, R.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

Daniels, P.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Davies, R.

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

De Feijter, J. A.

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Deacon, J.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Eddowes, M.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Edwards, P.

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

Fattinger, C.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

C. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

Gauglitz, G.

Goddard, N.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

Greve, J.

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[CrossRef]

Heideman, R.

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[CrossRef]

Huber, W.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

Hübscher, J.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

Hurst, J.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

Kersten, R. Th.

R. Th. Kersten, “The prism-film coupler as precision instrument,” Opt. Acta 22, 503–513, 515–521 (1975).

Kinning, T.

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

Koller, H.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

C. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

Kooyman, R.

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lowe, C.

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

Lukosz, W.

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 18–19, 581–586 (1994).

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as biochemical sensor,” Sens. Actuators B 18–19, 183–187 (1994).

P. Nellen, W. Lukosz, “Integrated optical input grating couplers as direct affinity sensors,” Biosens. Bioelectron. 8, 129–147 (1993).
[CrossRef]

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sens. Actuators A 25–27, 185–188 (1991).

K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

Ph. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Lundström, I.

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Mangold, C.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

Maule, C.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

Miki, A.

Molloy, J.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

Müller, F.

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

Nellen, P.

P. Nellen, W. Lukosz, “Integrated optical input grating couplers as direct affinity sensors,” Biosens. Bioelectron. 8, 129–147 (1993).
[CrossRef]

Nellen, Ph.

Ph. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Okamura, Y.

Pedley, D.

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Piehler, J.

Pollard-Knight, D.

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

Polzius, R.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Schasfoort, R.

A. Severs, R. Schasfoort, “Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles,” Biosens. Bioelectron. 8, 365–370 (1993).
[CrossRef]

Schlatter, D.

C. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

Severs, A.

A. Severs, R. Schasfoort, “Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles,” Biosens. Bioelectron. 8, 365–370 (1993).
[CrossRef]

Stamm, C.

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as biochemical sensor,” Sens. Actuators B 18–19, 183–187 (1994).

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sens. Actuators A 25–27, 185–188 (1991).

Steward, W.

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

Tiefenthaler, K.

K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

Ph. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Veer, F. A.

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Wagner, E.

J. Piehler, A. Brandenburg, A. Brecht, E. Wagner, G. Gauglitz, “Characterization of grating couplers for affinity-based pesticide sensing,” Appl. Opt. 36, 6554–6562 (1997).
[CrossRef]

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Wehrli, P.

C. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

Yamamoto, S.

Yeung, D.

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

Appl. Opt. (2)

Biopolymers (1)

J. A. De Feijter, J. Benjamins, F. A. Veer, “Ellipsometry as a tool to study the adsorption behaviour of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759–1772 (1978).
[CrossRef]

Biosens. Bioelectron. (6)

P. Nellen, W. Lukosz, “Integrated optical input grating couplers as direct affinity sensors,” Biosens. Bioelectron. 8, 129–147 (1993).
[CrossRef]

C. Fattinger, H. Koller, D. Schlatter, P. Wehrli, “The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration,” Biosens. Bioelectron. 8, 99–107 (1993).
[CrossRef]

D. Schlatter, R. Barner, C. Fattinger, W. Huber, J. Hübscher, J. Hurst, H. Koller, C. Mangold, F. Müller, “The difference interferometer: application as a direct affinity sensor,” Biosens. Bioelectron. 8, 109–116 (1993).
[CrossRef]

A. Severs, R. Schasfoort, “Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles,” Biosens. Bioelectron. 8, 365–370 (1993).
[CrossRef]

R. Cush, J. Cronin, W. Steward, C. Maule, J. Molloy, N. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347–353 (1993).
[CrossRef]

P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. II. Applications,” Biosens. Bioelectron. 8, 355–363 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Acta (1)

R. Th. Kersten, “The prism-film coupler as precision instrument,” Opt. Acta 22, 503–513, 515–521 (1975).

Sens. Actuators (3)

Ph. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

P. Daniels, J. Deacon, M. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–18 (1988).
[CrossRef]

Sens. Actuators A (1)

W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sens. Actuators A 25–27, 185–188 (1991).

Sens. Actuators B (5)

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as biochemical sensor,” Sens. Actuators B 18–19, 183–187 (1994).

R. Heideman, R. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–217 (1993).
[CrossRef]

A. Brandenburg, “Differential refractometry by an integrated optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).

D. Clerc, W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators B 18–19, 581–586 (1994).

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Other (4)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

T. Tamir, ed., Guided-Wave Optoelectronics, Vol. 26 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1988).
[CrossRef]

“Internationale Tabelle der Brechzahlen von Saccharose-Lösungen bei 20 °C,” International Commission for Uniform Methods of Sugar Analysis (ICUMSA Publications Department, 1974 c/o British Sugar Technical Centre, Norwich Park, Colney, Norwich NR4 7UB, UK).

U. Bilitewski, F. Bier, A. Brandenburg, “Immunobiosensors based on grating couplers,” in Affinity Biosensors: Techniques and Protocols, Vol. 7 of Methods in Biotechnology (Humana, Totowana, N.J., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the integrated optical Young interferometer for biosensing.

Fig. 2
Fig. 2

(a) Refractive-index distribution and (b) intensity profile for a 400-nm-thick silicon oxonitrate waveguide with refractive index of 1.57. (c) Mode diagram of a film waveguide with the same refractive index.

Fig. 3
Fig. 3

Electron microscope picture of an etched channel waveguide.

Fig. 4
Fig. 4

Splitting region of an integrated optical y branch.

Fig. 5
Fig. 5

Integrated optical y branch, visualized by scattering of guided light from a He–Ne laser.

Fig. 6
Fig. 6

Intensity distribution of a 50-µm y branch, detected with a CCD array.

Fig. 7
Fig. 7

Calibration of the measurement system with saccharose solutions of different concentrations. The sensor signal (TE polarization) for three sets of measurements is shown.

Fig. 8
Fig. 8

Change of effective refractive index Δn eff that is due to changes of the refractive index of the sample Δn c covering the waveguides. Saccharose concentrations varied in the range of 0.2–1.0 g/l and 1–5 g/l. Measurement with TE and TM polarization, respectively. Curves, theoretical values expected for a slab waveguide system.

Fig. 9
Fig. 9

Adsorption of protein G (0.2 mg/ml in PBS) on the measurement channel. The reference arm was continuously rinsed with PBS. The inset shows a more detailed view. Exponential fit to the binding curve yields the extrapolated maximum sensor response: Δn eff = 9.8 × 10-5.

Fig. 10
Fig. 10

Protein G–IgG immunoassay. The sensogram shows the immobilization of protein G on the chip surface, followed by the formation of the protein G–IgG complex, caused by pumping of 22 µg/ml IgG in PBS through the measurement channel. The reference arm was continuously rinsed with PBS.

Fig. 11
Fig. 11

Experimental determination of the lower detection limit for IgG. Signal drift and rms noise were determined by linear fit to 200 data points: Δn efft = 1.3 × 10-6/h, σ(Δn eff) = 3.0 × 10-8. The sensor response to 50 ng/ml IgG in PBS is Δn eff = 4.1 × 10-7.

Tables (5)

Tables Icon

Table 1 Waveguide Parameters for Numerical Calculations

Tables Icon

Table 2 Calculated Waveguide Data

Tables Icon

Table 3 Data of PECVD Films

Tables Icon

Table 4 Theoretical and Experimental Values for the Sensitivity Constant ∂n eff /∂n c

Tables Icon

Table 5 Detection Limits of the Interferometric Biosensora

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

2ktfnf2-neff21/2+ϕ0+ϕs=2πm,
ϕ0=-2 arc tannf/nc2ρneff2-nc21/2/nf2-neff21/2,
ϕs=-2 arc tannf/ns2ρneff2-ns21/2/nf2-neff21/2,
Δneff=neff/tadΔtad+neff/ncΔnc.
Γ=nad-ncdnad/dc tad.
dnad/dc=0.188 ml/g.
ΔΓ=dΓ/dtaddtad/dneffΔneff,
ΔΓ/Δneff=8.29×10-6 g/mm2.
IΔIAr1+κΔIcoskΔI,
κΔIexp-2ΔI/Ic2.
Δϕ=2πx/p,
IxAx1+cosΔϕx-δ,
δ=2πLΔneff/λ.
Δneff=d/bLΔx.
ϕ=-arc tanS/C.
Δx=ϕp/2π.
Δn=1.43×10-4 I/g.
Δneff=9.0×10-8.
Γmin=750 fg/mm2.

Metrics