Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Harvey, C. L. Vernold, A. Krywonos, P. L. Thompson, “Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory,” Appl. Opt. 38, 6469–6481 (1999).
    [CrossRef]
  2. H. F. Davis, Vector Analysis (Allyn and Bacon, Boston, 1961).

1999

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P=B Iθ, ϕdωc=BAs Lθ, ϕ, x, ycos θsdAs sin θdθdϕ.
P=BAs Lθ, ϕ, x, ydAs sin θ cos θdθdϕ=BAs Lα, β, x, ydAsdαdβ.
P=Ac Ecθ, ϕdAc=B r2Ecθ, ϕcos θ sin θ cos θdθdϕ=B r2Ecα, βγdαdβ.
P=Br2|Uα, β; r|2γ2dαdβ=B λ2|U0x, y|2dαdβ.
As Lα, β, x, ydAs=λ2|U0x, y|2.
PTλ2=-- |U0x, y|2dxdy=α=-11β=-(1-α2)1/2(1-α2)1/2 |U0x, y|2dαdβ,

Metrics