Abstract

We present a three-dimensional imaging analysis of confocal and conventional polarization microscopes by using the extended Mie scattering theory. In the analysis, we calculate the images of a Mie particle whose diameter is comparable with the wavelength of confocal and conventional microscopes. It was found that, when we observe a Mie particle, polarization confocal microscopy is not affected by the polarization distortion that is due to focusing with high-numerical-aperture lenses and does not produce pseudopeaks in the images in comparison with conventional polarization microscopy. The three-dimensional resolution of the polarization microscope and the verification of the proposed analysis method are also discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, R. Juškaitis, P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
    [CrossRef]
  2. S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
    [CrossRef]
  3. Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
    [CrossRef]
  4. P. Török, P. D. Higdon, T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998).
    [CrossRef]
  5. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
    [CrossRef]
  6. R. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 258, 358–379 (1959).
    [CrossRef]
  7. S. Alasfar, M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Polarization-multiplexed optical memory with urethane–urea copolymers,” Appl. Opt. 38, 6201–6204 (1999).
    [CrossRef]
  8. S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
    [CrossRef]
  9. Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
    [CrossRef]
  10. S. Kawata, Y. Kawata, “Three-dimensional data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
    [CrossRef]

2000 (1)

S. Kawata, Y. Kawata, “Three-dimensional data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

1999 (1)

1998 (3)

Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
[CrossRef]

Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
[CrossRef]

P. Török, P. D. Higdon, T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998).
[CrossRef]

1997 (1)

T. Wilson, R. Juškaitis, P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

1988 (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

1959 (1)

R. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 258, 358–379 (1959).
[CrossRef]

Alasfar, S.

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Egami, C.

Hashimoto, Y.

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Hell, S.

S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
[CrossRef]

Higdon, P.

T. Wilson, R. Juškaitis, P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Higdon, P. D.

P. Török, P. D. Higdon, T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998).
[CrossRef]

Inami, W.

Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
[CrossRef]

Ishikawa, M.

Ishitobi, H.

Juškaitis, R.

T. Wilson, R. Juškaitis, P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Kawata, S.

S. Kawata, Y. Kawata, “Three-dimensional data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
[CrossRef]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Kawata, Y.

S. Kawata, Y. Kawata, “Three-dimensional data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

S. Alasfar, M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Polarization-multiplexed optical memory with urethane–urea copolymers,” Appl. Opt. 38, 6201–6204 (1999).
[CrossRef]

Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
[CrossRef]

Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
[CrossRef]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Okamoto, N.

Richards, R.

R. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 258, 358–379 (1959).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Sugihara, O.

Tanaka, T.

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Török, P.

P. Török, P. D. Higdon, T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998).
[CrossRef]

Tsuchimori, M.

Watanabe, O.

Wijnaendts-van-Resandt, R. W.

S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
[CrossRef]

Wilson, T.

P. Török, P. D. Higdon, T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998).
[CrossRef]

T. Wilson, R. Juškaitis, P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Wolf, E.

R. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 258, 358–379 (1959).
[CrossRef]

Appl. Opt. (1)

Chem. Rev. (1)

S. Kawata, Y. Kawata, “Three-dimensional data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
[CrossRef]

Opt. Commun. (2)

P. Török, P. D. Higdon, T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998).
[CrossRef]

T. Wilson, R. Juškaitis, P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. R. Soc. London Ser. A (1)

R. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 258, 358–379 (1959).
[CrossRef]

Other (2)

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the optical setup of a typical confocal polarization microscope. L1 and L2, objective lenses.

Fig. 2
Fig. 2

Calculated results of the optical intensity-distribution fields when the incident laser beams are focused on (a) y = 0, (b) y = 0.5a, (c) y = a.

Fig. 3
Fig. 3

Calculated results of the images obtained with a beam in a confocal polarization microscope that was focused on planes (a) z = -0.5a, (b) z = 0, (c) z = 0.5a and with a beam in a conventional polarization microscope that was focused on planes (d) z = -0.5a, (e) z = 0, (f) z = 0.5a.

Fig. 4
Fig. 4

Cross sections of the images of Fig. 3(b) taken along the lines at (a) x = 0 and (b) x = a. Cross sections of the images of Fig. 3 (e) taken along the lines at (c) x = 0 and (d) x = a.

Fig. 5
Fig. 5

(a), (c) Axial responses in the images obtained with a confocal polarization microscope; (b), (d) axial responses in the images obtained with a conventional microscope. (a) and (b) were scanned along the center line, whereas (c) and (d) were scanned along the line that is a distance of 0.1a away from the center line.

Fig. 6
Fig. 6

Calculated results for the images obtained by use of a confocal polarization microscope. The images are of particles with radii of (a) a = 2.5λ, (b) a = 1.5λ, (c) a = 0.5λ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Iconfx0, y0, z0= E˜yx, y; x0, y0, z0dxdy2+ E˜zx, y; x0, y0, z0dxdy2,
Iconvx0, y0, z0= |E˜yx, y; x0, y0, z0|2dxdy+ |E˜zx, y; x0, y0, z0|2dxdy.

Metrics