Abstract

Mueller matrices provide a complete characterization of the optical polarization properties of biological tissue. A polarization-sensitive optical coherence tomography (OCT) system was built and used to investigate the optical polarization properties of biological tissues and other turbid media. The apparent degree of polarization (DOP) of the backscattered light was measured with both liquid and solid scattering samples. The DOP maintains the value of unity within the detectable depth for the solid sample, whereas the DOP decreases with the optical depth for the liquid sample. Two-dimensional depth-resolved images of both the Stokes vectors of the backscattered light and the full Mueller matrices of biological tissue were measured with this system. These polarization measurements revealed some tissue structures that are not perceptible with standard OCT.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  2. A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ungarunyawee, J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://epubs.osa.org/opticsexpress .
  3. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  4. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, J. S. Nelson, “Imaging thermally damaged tissue by polarization-sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998), http://epubs.osa.org/opticsexpress .
    [CrossRef]
  5. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998).
    [CrossRef]
  6. J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [CrossRef]
  7. G. Yao, L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
    [CrossRef]
  8. W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53, 468–478 (1995).
    [CrossRef]

1999 (3)

1998 (3)

1995 (1)

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53, 468–478 (1995).
[CrossRef]

Bailey, W. M.

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53, 468–478 (1995).
[CrossRef]

Bickel, W. S.

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53, 468–478 (1995).
[CrossRef]

Boppart, S. A.

Chen, Z.

Colston, B. W.

Da Silva, L. B.

de Boer, J. F.

Drexler, W.

Everett, M. J.

Fujimoto, J. G.

Ippen, E. P.

Kärtner, F. X.

Li, X. D.

Malekafzali, A.

Milner, T. E.

Morgner, U.

Nelson, J. S.

Pitris, C.

Schmitt, J. M.

Schoenenberger, K.

Srinivas, S. M.

Wang, L. V.

Xiang, S. H.

Yao, G.

Am. J. Phys. (1)

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53, 468–478 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (1)

A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ungarunyawee, J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://epubs.osa.org/opticsexpress .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the polarization-sensitive OCT system: SLD, superluminescent diode; P, polarizer; HW, zero-order half-wave plate; QW, zero-order quarter-wave plate; NBS, nonpolarization beam splitter; VW, variable-wave plate; M, mirror; L1 and L2, lenses; PD, photodiode.

Fig. 2
Fig. 2

Plots of (a) the horizontal linear polarization Stokes vector S H0 and the DOP for a 5% Intralipid solution from which the DOLP and the DOCP for (b) a 5% Intralipid solution were calculated. (c) The DOP’s for a 1%, a 2%, and a 5% Intralipid solution.

Fig. 3
Fig. 3

Plots of (a) the horizontal linear polarization Stokes vector S H0 and the DOP for bone tissue from the head of a yellow croaker fish and (b) the corresponding DOLP and DOCP for the same sample region.

Fig. 4
Fig. 4

(a) Raw 2-D OCT images and (b) 2-D images of the corresponding Stokes parameters of the fish-bone sample used for Fig. 3. All the images share the same color map. The upper boundary in each image represents the incident surface of the glass plate that was used for fixing the bone sample. The physical size of each image was 1.0 mm × 0.5 mm.

Fig. 5
Fig. 5

(a) Raw 2-D OCT images and (b) 2-D images of the corresponding Mueller matrix parameters of the fish-bone sample used for Fig. 3. All the images share the same color map. The physical size of each image is 0.67 mm × 0.5 mm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S=IH+IVIH-IVIP-IMIR-IL,
S=S0S1S2S3=IH+IVIH-IV2IP-IH+IV2IR-IH+IV.
DOP=S12+S22+S321/2S0,  DOLP=S12+S221/2S0,  DOCP=S3S0.
Sout=MSin,
SHi=1100, SVi=1-100, SPi=1010, SRi=1001,
SH=MSHi=M0+M1,  SV=MSVi=M0-M1,  SP=MSPi=M0+M2,  SR=MSRi=M0+M3.
M=12SH+SV, SH-SV, 2SP-SH+SV, 2SR-SH+SV.
IOCT=2 ReEsls·Er,A*lr=2Is,AlsIr,A1/2|VΔl|cosk0Δl,
Is,A  IOCT2/Ir,A.
S=IH+IVIH-IV2IP-IH+IV2IR-IH+IV+2In000=S+Sn.
DOPS=DOPSS0S0+2In=S0S0+2In.
Mcal=1.000-0.0420-0.0028-0.0479-0.0405 0.9975-0.0591-0.0306-0.0095-0.0004 1.0671 0.2089-0.0134-0.0182 0.2008 1.0999.

Metrics