Abstract

Measurements of two-photon-excited fluorescence (TPF) of fluorescein and Rhodamine 6G in various solvents were performed with a continuous-wave (cw) laser for excitation and an acousto-optic tunable filter for spectral dispersion. Interestingly, the cw laser excitation produced an unwanted thermal-lens effect when the measurements were performed in solvents that absorb the excitation laser light (e.g., alcohols and water, because these solvents absorb the 780-nm excitation light through the overtone and combination transitions of the O—H group). The defocusing effect of the thermal lens leads to a decrease in the TPF signal. Because the strength of the thermal lens depends on the thermo-optical properties (dn/dT and thermal conductivity) of the solvent, its interference makes the effect of solvents on the TPF much different from those on one-photon-excited fluorescence. However, the thermal-lens interference will not limit the application of this cw laser excited TPF technique because, even when measurements were performed in solvents that absorb cw excitation laser light, the thermal-lens interference was observed only in solvents such as nonpolar organic solvents that have relatively better thermo-optical properties. Interference was not observed in water, which is the most widely used solvent for the TPF technique (because water has poor thermo-optical properties).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Goeppert-Mayer, “Uber Elementarakte mit zwei Quantensprungen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).
    [CrossRef]
  2. W. Kaiser, C. G. B. Garrett, “Two photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
    [CrossRef]
  3. W. Denk, J. H. Stricker, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  4. M. J. Wirth, A. C. Koskelo, C. E. Mohler, “Study of solvation symmetry by two photon polarization measurements,” J. Phys. Chem. 87, 4395–4400 (1983).
    [CrossRef]
  5. C. E. Mohlern, M. J. Wirth, “Solvent perturbations on the excited state symmetry of randomly oriented molecules by two photon absorption,” J. Chem. Phys. 88, 7369–7375 (1988).
    [CrossRef]
  6. A. Fischer, C. Cremer, E. H. K. Stelzer, “Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser,” Appl. Opt. 34, 1989–2003 (1995).
    [CrossRef] [PubMed]
  7. C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [CrossRef]
  8. C. Xu, J. B. Shear, W. W. Webb, “Hyper Rayleigh and hyper Raman scattering background of liquid water in two photon excited fluorescence detection,” Anal. Chem. 69, 1285–1287 (1997).
    [CrossRef] [PubMed]
  9. C. Radzewicz, P. Glowczewski, J. Krasinski, “High efficient system for studying multiphoton absorption,” Appl. Phys. 17, 423–424 (1978).
    [CrossRef]
  10. I. M. Catalano, A. Cingolani, “Multiphoton cross-section measurements with low-power cw laser-induced luminescence,” Appl. Opt. 21, 477–480 (1982).
    [CrossRef] [PubMed]
  11. C. D. Tran, “Acousto-optic devices: new optical elements for spectroscopy,” Anal. Chem. 64, 971A–981A (1992).
  12. C. D. Tran, J. Lu, “Characterization of the acousto-optic tunable filter for the ultraviolet and visible regions and development of an AOTF based rapid scanning detector for HPLC,” Anal. Chim. Acta 314, 57–66 (1995).
    [CrossRef]
  13. C. D. Tran, “Principles and analytical applications of acousto-optic tunable filter: an overview,” Talanta 45, 237–248 (1997).
    [CrossRef]
  14. M. S. Baptista, C. D. Tran, “Near-infrared thermal lens spectrometer based on an erbium-doped fiber amplifier and an acousto-optic tunable filter, and its application in the determination of nucleotides,” Appl. Opt. 36, 7059–7065 (1997).
    [CrossRef]
  15. M. S. Baptista, C. D. Tran, G. H. Gao, “Near infrared detection of flow injection analysis by acousto-optic tunable filter based spectrometry,” Anal. Chem. 68, 971–976 (1996).
    [CrossRef] [PubMed]
  16. M. Franko, C. D. Tran, “Temperature effect on photothermal lens phenomena in water: photothermal focusing and defocusing,” Chem. Phys. Lett. 158, 31–36 (1989).
    [CrossRef]
  17. M. Franko, C. D. Tran, “Water as a unique medium for thermal lens measurements,” Anal. Chem. 61, 1660–1666 (1989).
    [CrossRef]
  18. M. Franko, C. D. Tran, “Thermal lens effect in electrolyte and surfactant media,” J. Phys. Chem. 95, 6688–6696 (1991).
    [CrossRef]
  19. Fischer Scientific Corporation, Acros Organic Chemicals, 1995/1996 catalog, (FischerScientific, Pittsburgh, Pa., 1995), pp. 878, 1515.
  20. M. Fischer, J. Georges, Spectrochim. Acta Part A 53, 1419–1423 (1997).
    [CrossRef]
  21. J. P. Hermann, J. Ducuing, “Dispersion of the two photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
    [CrossRef]
  22. D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
    [CrossRef]
  23. K. S. Overway, F. E. Lytle, “Two photon excitation profiles in cylindrical capillaries,” Appl. Spectrosc. 52, 928–932 (1998).
    [CrossRef]
  24. C. D. Tran, V. I. Grishko, M. S. Baptista, “Nondestructive and nonintrusive determination of chemical and isotopic purity of solvents by near infrared thermal lens spectrometry,” Appl. Spectrosc. 48, 833–842 (1994).
    [CrossRef]
  25. J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification (Wiley, New York, 1986).
  26. N. W. Tsederberg, Thermal Conductivity of Gases and Liquids (MIT Press, Cambridge, Mass., 1965).

1998 (1)

1997 (4)

M. Fischer, J. Georges, Spectrochim. Acta Part A 53, 1419–1423 (1997).
[CrossRef]

C. Xu, J. B. Shear, W. W. Webb, “Hyper Rayleigh and hyper Raman scattering background of liquid water in two photon excited fluorescence detection,” Anal. Chem. 69, 1285–1287 (1997).
[CrossRef] [PubMed]

C. D. Tran, “Principles and analytical applications of acousto-optic tunable filter: an overview,” Talanta 45, 237–248 (1997).
[CrossRef]

M. S. Baptista, C. D. Tran, “Near-infrared thermal lens spectrometer based on an erbium-doped fiber amplifier and an acousto-optic tunable filter, and its application in the determination of nucleotides,” Appl. Opt. 36, 7059–7065 (1997).
[CrossRef]

1996 (2)

M. S. Baptista, C. D. Tran, G. H. Gao, “Near infrared detection of flow injection analysis by acousto-optic tunable filter based spectrometry,” Anal. Chem. 68, 971–976 (1996).
[CrossRef] [PubMed]

C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
[CrossRef]

1995 (2)

C. D. Tran, J. Lu, “Characterization of the acousto-optic tunable filter for the ultraviolet and visible regions and development of an AOTF based rapid scanning detector for HPLC,” Anal. Chim. Acta 314, 57–66 (1995).
[CrossRef]

A. Fischer, C. Cremer, E. H. K. Stelzer, “Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser,” Appl. Opt. 34, 1989–2003 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

C. D. Tran, “Acousto-optic devices: new optical elements for spectroscopy,” Anal. Chem. 64, 971A–981A (1992).

1991 (1)

M. Franko, C. D. Tran, “Thermal lens effect in electrolyte and surfactant media,” J. Phys. Chem. 95, 6688–6696 (1991).
[CrossRef]

1990 (1)

W. Denk, J. H. Stricker, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1989 (2)

M. Franko, C. D. Tran, “Temperature effect on photothermal lens phenomena in water: photothermal focusing and defocusing,” Chem. Phys. Lett. 158, 31–36 (1989).
[CrossRef]

M. Franko, C. D. Tran, “Water as a unique medium for thermal lens measurements,” Anal. Chem. 61, 1660–1666 (1989).
[CrossRef]

1988 (1)

C. E. Mohlern, M. J. Wirth, “Solvent perturbations on the excited state symmetry of randomly oriented molecules by two photon absorption,” J. Chem. Phys. 88, 7369–7375 (1988).
[CrossRef]

1983 (1)

M. J. Wirth, A. C. Koskelo, C. E. Mohler, “Study of solvation symmetry by two photon polarization measurements,” J. Phys. Chem. 87, 4395–4400 (1983).
[CrossRef]

1982 (1)

1978 (1)

C. Radzewicz, P. Glowczewski, J. Krasinski, “High efficient system for studying multiphoton absorption,” Appl. Phys. 17, 423–424 (1978).
[CrossRef]

1972 (2)

J. P. Hermann, J. Ducuing, “Dispersion of the two photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
[CrossRef]

1961 (1)

W. Kaiser, C. G. B. Garrett, “Two photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

1931 (1)

M. Goeppert-Mayer, “Uber Elementarakte mit zwei Quantensprungen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).
[CrossRef]

Baptista, M. S.

Bradley, D. J.

D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
[CrossRef]

Bunger, W. B.

J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification (Wiley, New York, 1986).

Catalano, I. M.

Cingolani, A.

Cremer, C.

Denk, W.

W. Denk, J. H. Stricker, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Ducuing, J.

J. P. Hermann, J. Ducuing, “Dispersion of the two photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

Fischer, A.

Fischer, M.

M. Fischer, J. Georges, Spectrochim. Acta Part A 53, 1419–1423 (1997).
[CrossRef]

Franko, M.

M. Franko, C. D. Tran, “Thermal lens effect in electrolyte and surfactant media,” J. Phys. Chem. 95, 6688–6696 (1991).
[CrossRef]

M. Franko, C. D. Tran, “Water as a unique medium for thermal lens measurements,” Anal. Chem. 61, 1660–1666 (1989).
[CrossRef]

M. Franko, C. D. Tran, “Temperature effect on photothermal lens phenomena in water: photothermal focusing and defocusing,” Chem. Phys. Lett. 158, 31–36 (1989).
[CrossRef]

Gao, G. H.

M. S. Baptista, C. D. Tran, G. H. Gao, “Near infrared detection of flow injection analysis by acousto-optic tunable filter based spectrometry,” Anal. Chem. 68, 971–976 (1996).
[CrossRef] [PubMed]

Garrett, C. G. B.

W. Kaiser, C. G. B. Garrett, “Two photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Georges, J.

M. Fischer, J. Georges, Spectrochim. Acta Part A 53, 1419–1423 (1997).
[CrossRef]

Glowczewski, P.

C. Radzewicz, P. Glowczewski, J. Krasinski, “High efficient system for studying multiphoton absorption,” Appl. Phys. 17, 423–424 (1978).
[CrossRef]

Goeppert-Mayer, M.

M. Goeppert-Mayer, “Uber Elementarakte mit zwei Quantensprungen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).
[CrossRef]

Grishko, V. I.

Hermann, J. P.

J. P. Hermann, J. Ducuing, “Dispersion of the two photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

Hutchinson, M. H. R.

D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
[CrossRef]

Kaiser, W.

W. Kaiser, C. G. B. Garrett, “Two photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Koetser, T. M. H.

D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
[CrossRef]

Koskelo, A. C.

M. J. Wirth, A. C. Koskelo, C. E. Mohler, “Study of solvation symmetry by two photon polarization measurements,” J. Phys. Chem. 87, 4395–4400 (1983).
[CrossRef]

Krasinski, J.

C. Radzewicz, P. Glowczewski, J. Krasinski, “High efficient system for studying multiphoton absorption,” Appl. Phys. 17, 423–424 (1978).
[CrossRef]

Lu, J.

C. D. Tran, J. Lu, “Characterization of the acousto-optic tunable filter for the ultraviolet and visible regions and development of an AOTF based rapid scanning detector for HPLC,” Anal. Chim. Acta 314, 57–66 (1995).
[CrossRef]

Lytle, F. E.

Mohler, C. E.

M. J. Wirth, A. C. Koskelo, C. E. Mohler, “Study of solvation symmetry by two photon polarization measurements,” J. Phys. Chem. 87, 4395–4400 (1983).
[CrossRef]

Mohlern, C. E.

C. E. Mohlern, M. J. Wirth, “Solvent perturbations on the excited state symmetry of randomly oriented molecules by two photon absorption,” J. Chem. Phys. 88, 7369–7375 (1988).
[CrossRef]

New, C.

D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
[CrossRef]

Overway, K. S.

Petty, M. S.

D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
[CrossRef]

Radzewicz, C.

C. Radzewicz, P. Glowczewski, J. Krasinski, “High efficient system for studying multiphoton absorption,” Appl. Phys. 17, 423–424 (1978).
[CrossRef]

Riddick, J. A.

J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification (Wiley, New York, 1986).

Sakano, T. K.

J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification (Wiley, New York, 1986).

Shear, J. B.

C. Xu, J. B. Shear, W. W. Webb, “Hyper Rayleigh and hyper Raman scattering background of liquid water in two photon excited fluorescence detection,” Anal. Chem. 69, 1285–1287 (1997).
[CrossRef] [PubMed]

Stelzer, E. H. K.

Stricker, J. H.

W. Denk, J. H. Stricker, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Tran, C. D.

C. D. Tran, “Principles and analytical applications of acousto-optic tunable filter: an overview,” Talanta 45, 237–248 (1997).
[CrossRef]

M. S. Baptista, C. D. Tran, “Near-infrared thermal lens spectrometer based on an erbium-doped fiber amplifier and an acousto-optic tunable filter, and its application in the determination of nucleotides,” Appl. Opt. 36, 7059–7065 (1997).
[CrossRef]

M. S. Baptista, C. D. Tran, G. H. Gao, “Near infrared detection of flow injection analysis by acousto-optic tunable filter based spectrometry,” Anal. Chem. 68, 971–976 (1996).
[CrossRef] [PubMed]

C. D. Tran, J. Lu, “Characterization of the acousto-optic tunable filter for the ultraviolet and visible regions and development of an AOTF based rapid scanning detector for HPLC,” Anal. Chim. Acta 314, 57–66 (1995).
[CrossRef]

C. D. Tran, V. I. Grishko, M. S. Baptista, “Nondestructive and nonintrusive determination of chemical and isotopic purity of solvents by near infrared thermal lens spectrometry,” Appl. Spectrosc. 48, 833–842 (1994).
[CrossRef]

C. D. Tran, “Acousto-optic devices: new optical elements for spectroscopy,” Anal. Chem. 64, 971A–981A (1992).

M. Franko, C. D. Tran, “Thermal lens effect in electrolyte and surfactant media,” J. Phys. Chem. 95, 6688–6696 (1991).
[CrossRef]

M. Franko, C. D. Tran, “Water as a unique medium for thermal lens measurements,” Anal. Chem. 61, 1660–1666 (1989).
[CrossRef]

M. Franko, C. D. Tran, “Temperature effect on photothermal lens phenomena in water: photothermal focusing and defocusing,” Chem. Phys. Lett. 158, 31–36 (1989).
[CrossRef]

Tsederberg, N. W.

N. W. Tsederberg, Thermal Conductivity of Gases and Liquids (MIT Press, Cambridge, Mass., 1965).

Webb, W. W.

C. Xu, J. B. Shear, W. W. Webb, “Hyper Rayleigh and hyper Raman scattering background of liquid water in two photon excited fluorescence detection,” Anal. Chem. 69, 1285–1287 (1997).
[CrossRef] [PubMed]

C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
[CrossRef]

W. Denk, J. H. Stricker, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wirth, M. J.

C. E. Mohlern, M. J. Wirth, “Solvent perturbations on the excited state symmetry of randomly oriented molecules by two photon absorption,” J. Chem. Phys. 88, 7369–7375 (1988).
[CrossRef]

M. J. Wirth, A. C. Koskelo, C. E. Mohler, “Study of solvation symmetry by two photon polarization measurements,” J. Phys. Chem. 87, 4395–4400 (1983).
[CrossRef]

Xu, C.

C. Xu, J. B. Shear, W. W. Webb, “Hyper Rayleigh and hyper Raman scattering background of liquid water in two photon excited fluorescence detection,” Anal. Chem. 69, 1285–1287 (1997).
[CrossRef] [PubMed]

C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
[CrossRef]

Anal. Chem. (4)

C. Xu, J. B. Shear, W. W. Webb, “Hyper Rayleigh and hyper Raman scattering background of liquid water in two photon excited fluorescence detection,” Anal. Chem. 69, 1285–1287 (1997).
[CrossRef] [PubMed]

C. D. Tran, “Acousto-optic devices: new optical elements for spectroscopy,” Anal. Chem. 64, 971A–981A (1992).

M. S. Baptista, C. D. Tran, G. H. Gao, “Near infrared detection of flow injection analysis by acousto-optic tunable filter based spectrometry,” Anal. Chem. 68, 971–976 (1996).
[CrossRef] [PubMed]

M. Franko, C. D. Tran, “Water as a unique medium for thermal lens measurements,” Anal. Chem. 61, 1660–1666 (1989).
[CrossRef]

Anal. Chim. Acta (1)

C. D. Tran, J. Lu, “Characterization of the acousto-optic tunable filter for the ultraviolet and visible regions and development of an AOTF based rapid scanning detector for HPLC,” Anal. Chim. Acta 314, 57–66 (1995).
[CrossRef]

Ann. Phys. (Leipzig) (1)

M. Goeppert-Mayer, “Uber Elementarakte mit zwei Quantensprungen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

C. Radzewicz, P. Glowczewski, J. Krasinski, “High efficient system for studying multiphoton absorption,” Appl. Phys. 17, 423–424 (1978).
[CrossRef]

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

M. Franko, C. D. Tran, “Temperature effect on photothermal lens phenomena in water: photothermal focusing and defocusing,” Chem. Phys. Lett. 158, 31–36 (1989).
[CrossRef]

J. Chem. Phys. (1)

C. E. Mohlern, M. J. Wirth, “Solvent perturbations on the excited state symmetry of randomly oriented molecules by two photon absorption,” J. Chem. Phys. 88, 7369–7375 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (2)

M. J. Wirth, A. C. Koskelo, C. E. Mohler, “Study of solvation symmetry by two photon polarization measurements,” J. Phys. Chem. 87, 4395–4400 (1983).
[CrossRef]

M. Franko, C. D. Tran, “Thermal lens effect in electrolyte and surfactant media,” J. Phys. Chem. 95, 6688–6696 (1991).
[CrossRef]

Opt. Commun. (1)

J. P. Hermann, J. Ducuing, “Dispersion of the two photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

W. Kaiser, C. G. B. Garrett, “Two photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

D. J. Bradley, M. H. R. Hutchinson, T. M. H. Koetser, C. New, M. S. Petty, “Interaction of picosecond laser pulses with organic molecules. I. Two photon fluorescence quenching and singlet states excitation in rhodamine dyes,” Proc. R. Soc. London Ser. A 328, 97–121 (1972).
[CrossRef]

Science (1)

W. Denk, J. H. Stricker, W. W. Webb, “Two photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Spectrochim. Acta Part A (1)

M. Fischer, J. Georges, Spectrochim. Acta Part A 53, 1419–1423 (1997).
[CrossRef]

Talanta (1)

C. D. Tran, “Principles and analytical applications of acousto-optic tunable filter: an overview,” Talanta 45, 237–248 (1997).
[CrossRef]

Other (3)

Fischer Scientific Corporation, Acros Organic Chemicals, 1995/1996 catalog, (FischerScientific, Pittsburgh, Pa., 1995), pp. 878, 1515.

J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents—Physical Properties and Methods of Purification (Wiley, New York, 1986).

N. W. Tsederberg, Thermal Conductivity of Gases and Liquids (MIT Press, Cambridge, Mass., 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TPF spectra of fluorescein at several concentrations (in 1.0 × 10-2 M borate buffer) excited with 1.1-W laser light at 770 nm.

Fig. 2
Fig. 2

TPF spectra of RG6 in ethanol at several concentrations excited with 1.0-W laser light at 780 nm.

Fig. 3
Fig. 3

(a) TPF intensity versus concentration for (a) fluorescein in a borate buffer at four constant excitation laser powers. (b) intensity versus concentration and (b) R6G in ethanol at three fixed excitation laser powers.

Fig. 4
Fig. 4

TPA spectra of 1.0 × 10-3 M R6G in ethanol (— — — —), propanol (– — –), isopropanol (—– —–), butanol (····), isobutanol (·—·), pentanol (··—), and hexanol (— —) excited with 1.0-W laser light at 780 nm.

Fig. 5
Fig. 5

(a) Log(TPF intensity) versus log(excitation laser power) for three solutions of fluorescein in water at three concentrations: 1.0 × 10-4 (+), 3.0 × 10-4 (○), and 1.0 × 10-3 M (■). (b) Log(TPF) intensity) versus log(excitation laser power) for two solutions of R6G in ethanol at two concentrations: 1.0 × 10-4 (○) and 1.0 × 10-3 M (■). Solid lines, straight lines obtained by linear regression.

Fig. 6
Fig. 6

Thermal-lens signal versus TPF intensity for R6G in seven solvents.

Tables (1)

Tables Icon

Table 1 Thermo-Optical Properties and Thermal Lens Signals of Several Solvents

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ=-2.303 AP0dn/dTλk,

Metrics