Abstract

The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption–scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Proceedings of 20th Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.
  2. P. G. Felton, F. V. Bracco, M. E. A. Bardsley, “On the quantitative application of exciplex fluorescence to engine sprays,” SAE paper 930870 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1254–1262.
  3. F. Rabenstein, J. Egermann, A. Leipertz, “Vapor-phase structure of Diesel-type fuel sprays: an experimental analysis,” SAE paper 982543 (Society of Automotive Engineers, Warrendale, Pa., 1998).
  4. C. Espey, J. E. Dee, T. A. Litzinger, D. A. Santavicca, “Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet,” Combust. Flame 109, 65–86 (1997).
    [CrossRef]
  5. K. Nishida, N. Murakami, H. Hiroyasu, “Holographic measurement of evaporating Diesel sprays at high pressure and temperature,” JSME Int. J. 30, 107–115 (1986).
    [CrossRef]
  6. H. Zhao, N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engine,” Prog. Energy Combust. Sci. 24, 297–336 (1998).
    [CrossRef]
  7. R. Chraplyvy, “Nonintrusive measurements of vapor concentrations inside sprays,” Appl. Opt. 20, 2620–2624 (1981).
    [CrossRef] [PubMed]
  8. M. Suzuki, K. Nishida, H. Hiroyasu, “Simultaneous concentration measurement of vapor and liquid in an evaporation Diesel spray,” SAE paper 930863 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1164–1186.
  9. Editor Committee, Handbook of Laser Measurement (Maruzen, Ltd., Tokyo, Japan, 1993), pp. 304–309 and 235–238, in Japanese.
  10. J. A. Drallmeier, “Hydrocarbon vapor measurements in fuel sprays: a simplification of the infrared extinction technique,” Appl. Opt. 33, 7175–7179 (1994).
    [CrossRef] [PubMed]
  11. T. P. Billings, J. A. Drallmeier, “A detailed assessment of the infrared extinction technique for hydrocarbon vapor measurements in a controlled two-phase flow,” Atomization Sprays 4, 99–121 (1994).
  12. E. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1988), pp. 77–81.
  13. T. Kamimoto, H. Yokota, H. Kobayashi, “A new technique for the measurement of Sauter mean diameter of droplets in unsteady dense sprays,” SAE paper 890316 (Society of Automotive Engineers, Warrendale, Pa., 1989), pp. 397–408.
  14. D. C. Hammond, “Deconvolution technique for line-of-sight optical scattering measurements in axisymmetric sprays,” Appl. Opt. 20, 493–499 (1981).
    [CrossRef] [PubMed]

1998

H. Zhao, N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engine,” Prog. Energy Combust. Sci. 24, 297–336 (1998).
[CrossRef]

1997

C. Espey, J. E. Dee, T. A. Litzinger, D. A. Santavicca, “Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet,” Combust. Flame 109, 65–86 (1997).
[CrossRef]

1994

J. A. Drallmeier, “Hydrocarbon vapor measurements in fuel sprays: a simplification of the infrared extinction technique,” Appl. Opt. 33, 7175–7179 (1994).
[CrossRef] [PubMed]

T. P. Billings, J. A. Drallmeier, “A detailed assessment of the infrared extinction technique for hydrocarbon vapor measurements in a controlled two-phase flow,” Atomization Sprays 4, 99–121 (1994).

1986

K. Nishida, N. Murakami, H. Hiroyasu, “Holographic measurement of evaporating Diesel sprays at high pressure and temperature,” JSME Int. J. 30, 107–115 (1986).
[CrossRef]

1981

Bardsley, M. E. A.

P. G. Felton, F. V. Bracco, M. E. A. Bardsley, “On the quantitative application of exciplex fluorescence to engine sprays,” SAE paper 930870 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1254–1262.

Billings, T. P.

T. P. Billings, J. A. Drallmeier, “A detailed assessment of the infrared extinction technique for hydrocarbon vapor measurements in a controlled two-phase flow,” Atomization Sprays 4, 99–121 (1994).

Bohren, E. E.

E. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1988), pp. 77–81.

Bracco, F. V.

P. G. Felton, F. V. Bracco, M. E. A. Bardsley, “On the quantitative application of exciplex fluorescence to engine sprays,” SAE paper 930870 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1254–1262.

Chraplyvy, R.

Dee, J. E.

C. Espey, J. E. Dee, T. A. Litzinger, D. A. Santavicca, “Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet,” Combust. Flame 109, 65–86 (1997).
[CrossRef]

Drallmeier, J. A.

T. P. Billings, J. A. Drallmeier, “A detailed assessment of the infrared extinction technique for hydrocarbon vapor measurements in a controlled two-phase flow,” Atomization Sprays 4, 99–121 (1994).

J. A. Drallmeier, “Hydrocarbon vapor measurements in fuel sprays: a simplification of the infrared extinction technique,” Appl. Opt. 33, 7175–7179 (1994).
[CrossRef] [PubMed]

Egermann, J.

F. Rabenstein, J. Egermann, A. Leipertz, “Vapor-phase structure of Diesel-type fuel sprays: an experimental analysis,” SAE paper 982543 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Espey, C.

C. Espey, J. E. Dee, T. A. Litzinger, D. A. Santavicca, “Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet,” Combust. Flame 109, 65–86 (1997).
[CrossRef]

Felton, P. G.

P. G. Felton, F. V. Bracco, M. E. A. Bardsley, “On the quantitative application of exciplex fluorescence to engine sprays,” SAE paper 930870 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1254–1262.

Hammond, D. C.

Hiroyasu, H.

K. Nishida, N. Murakami, H. Hiroyasu, “Holographic measurement of evaporating Diesel sprays at high pressure and temperature,” JSME Int. J. 30, 107–115 (1986).
[CrossRef]

M. Suzuki, K. Nishida, H. Hiroyasu, “Simultaneous concentration measurement of vapor and liquid in an evaporation Diesel spray,” SAE paper 930863 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1164–1186.

Huffman, D. R.

E. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1988), pp. 77–81.

Kamimoto, T.

T. Kamimoto, H. Yokota, H. Kobayashi, “A new technique for the measurement of Sauter mean diameter of droplets in unsteady dense sprays,” SAE paper 890316 (Society of Automotive Engineers, Warrendale, Pa., 1989), pp. 397–408.

Kobayashi, H.

T. Kamimoto, H. Yokota, H. Kobayashi, “A new technique for the measurement of Sauter mean diameter of droplets in unsteady dense sprays,” SAE paper 890316 (Society of Automotive Engineers, Warrendale, Pa., 1989), pp. 397–408.

Ladommatos, N.

H. Zhao, N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engine,” Prog. Energy Combust. Sci. 24, 297–336 (1998).
[CrossRef]

Leipertz, A.

F. Rabenstein, J. Egermann, A. Leipertz, “Vapor-phase structure of Diesel-type fuel sprays: an experimental analysis,” SAE paper 982543 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Litzinger, T. A.

C. Espey, J. E. Dee, T. A. Litzinger, D. A. Santavicca, “Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet,” Combust. Flame 109, 65–86 (1997).
[CrossRef]

Melton, L. A.

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Proceedings of 20th Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.

Murakami, N.

K. Nishida, N. Murakami, H. Hiroyasu, “Holographic measurement of evaporating Diesel sprays at high pressure and temperature,” JSME Int. J. 30, 107–115 (1986).
[CrossRef]

Nishida, K.

K. Nishida, N. Murakami, H. Hiroyasu, “Holographic measurement of evaporating Diesel sprays at high pressure and temperature,” JSME Int. J. 30, 107–115 (1986).
[CrossRef]

M. Suzuki, K. Nishida, H. Hiroyasu, “Simultaneous concentration measurement of vapor and liquid in an evaporation Diesel spray,” SAE paper 930863 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1164–1186.

Rabenstein, F.

F. Rabenstein, J. Egermann, A. Leipertz, “Vapor-phase structure of Diesel-type fuel sprays: an experimental analysis,” SAE paper 982543 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Santavicca, D. A.

C. Espey, J. E. Dee, T. A. Litzinger, D. A. Santavicca, “Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet,” Combust. Flame 109, 65–86 (1997).
[CrossRef]

Suzuki, M.

M. Suzuki, K. Nishida, H. Hiroyasu, “Simultaneous concentration measurement of vapor and liquid in an evaporation Diesel spray,” SAE paper 930863 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1164–1186.

Verdieck, J. F.

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Proceedings of 20th Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.

Yokota, H.

T. Kamimoto, H. Yokota, H. Kobayashi, “A new technique for the measurement of Sauter mean diameter of droplets in unsteady dense sprays,” SAE paper 890316 (Society of Automotive Engineers, Warrendale, Pa., 1989), pp. 397–408.

Zhao, H.

H. Zhao, N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engine,” Prog. Energy Combust. Sci. 24, 297–336 (1998).
[CrossRef]

Appl. Opt.

Atomization Sprays

T. P. Billings, J. A. Drallmeier, “A detailed assessment of the infrared extinction technique for hydrocarbon vapor measurements in a controlled two-phase flow,” Atomization Sprays 4, 99–121 (1994).

Combust. Flame

C. Espey, J. E. Dee, T. A. Litzinger, D. A. Santavicca, “Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet,” Combust. Flame 109, 65–86 (1997).
[CrossRef]

JSME Int. J.

K. Nishida, N. Murakami, H. Hiroyasu, “Holographic measurement of evaporating Diesel sprays at high pressure and temperature,” JSME Int. J. 30, 107–115 (1986).
[CrossRef]

Prog. Energy Combust. Sci.

H. Zhao, N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engine,” Prog. Energy Combust. Sci. 24, 297–336 (1998).
[CrossRef]

Other

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Proceedings of 20th Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.

P. G. Felton, F. V. Bracco, M. E. A. Bardsley, “On the quantitative application of exciplex fluorescence to engine sprays,” SAE paper 930870 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1254–1262.

F. Rabenstein, J. Egermann, A. Leipertz, “Vapor-phase structure of Diesel-type fuel sprays: an experimental analysis,” SAE paper 982543 (Society of Automotive Engineers, Warrendale, Pa., 1998).

E. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1988), pp. 77–81.

T. Kamimoto, H. Yokota, H. Kobayashi, “A new technique for the measurement of Sauter mean diameter of droplets in unsteady dense sprays,” SAE paper 890316 (Society of Automotive Engineers, Warrendale, Pa., 1989), pp. 397–408.

M. Suzuki, K. Nishida, H. Hiroyasu, “Simultaneous concentration measurement of vapor and liquid in an evaporation Diesel spray,” SAE paper 930863 (Society of Automotive Engineers, Warrendale, Pa., 1993), pp. 1164–1186.

Editor Committee, Handbook of Laser Measurement (Maruzen, Ltd., Tokyo, Japan, 1993), pp. 304–309 and 235–238, in Japanese.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption spectra of liquid fuels with physical properties similar to those of Diesel fuel: temperature T = 298 K, pressure P = 0.101 MPa, optical path length L = 10 mm. Ethanol was used as a solvent to dilute 1,3-DMN and α-MN to avoid exceeding the measurement range of the instrument.

Fig. 2
Fig. 2

Experimental setup for measurement of absorption spectra of 1,3-DMN vapor.

Fig. 3
Fig. 3

Absorption spectra of 1,3-DMN at various temperatures: ambient gas, nitrogen; ambient pressure P a = 3.0 MPa; vapor concentration C v = 0.06 mol/m3; optical path length L = 100 mm.

Fig. 4
Fig. 4

Absorption spectra of 1,3-DMN at various pressures: ambient gas, nitrogen; ambient temperature T a = 773 K; vapor concentration C v = 0.06 mol/m3; optical path length L = 100 mm.

Fig. 5
Fig. 5

1,3-DMN vapor concentration dependence of UV absorption: optical spectrometer, S2000 from Ocean Optics, Inc.; ambient gas, nitrogen; fuel, 1,3-DMN vapor; ambient temperature T a = 723 K; wavelength λ = 266 nm; optical path length L = 100 mm. (a) Correlation between absorbance and vapor mole concentration. (b) Correlation between absorption coefficient and absorbance.

Fig. 6
Fig. 6

Temperature dependence of the absorption coefficient of 1,3-DMN at different pressures: ambient gas, nitrogen; wavelength λ = 266 nm; optical path length L = 100 mm.

Fig. 7
Fig. 7

Temperature dependence of the absorption coefficient of α-MN at different pressures: ambient gas, nitrogen; wavelength λ = 280 nm; optical path length L = 100 mm.

Fig. 8
Fig. 8

Schematic of the optical arrangement of the spray imaging system: BP Filter, bandpass filter; I.I., image intensifier.

Fig. 9
Fig. 9

Images of fuel distribution at various ambient temperatures: ambient gas, nitrogen; ambient pressure P a = 0.101 MPa; injection pressure P inj = 0.5 MPa; photographic timing t img = 1.5 ms after start of injection.

Fig. 10
Fig. 10

Distribution of optical thickness at two wavelengths at different axial distances from the spray tip. The experimental conditions are the same as those in Fig. 9.

Tables (1)

Tables Icon

Table 1 Properties of Candidate Test Fuels

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Iλ=I0λexp0L-ελCvdxexp0L-Kextλdx,
Cv¯=1ελALlogI0IλA-R logI0IλT,
R=logI0IλAlogI0IλTdroplet=0QextλAD2NDdD0QextλTD2NDdD,
Qext=Qsca+Qabs.
R=0Qsca+QabsλAD2NDdD0QscaλTD2NDdD.
D20= NDD2dD NDdD1/2.
Cd¯=2.303 23L ρfD32QmlogI0IλT,
D32=0.63QextMfρf  logI0IλTΔS,
Ai=-logSi-DiRi-Di,

Metrics