Abstract

We describe a combined computer simulation and experimental investigation of the intracavity spatial beam profile characteristics of a planar-waveguide rf-excited CO2 laser that incorporates a hybrid waveguide confocal unstable negative-branch resonator. The study includes results for the intracavity lateral beam intensity profile and output power of the laser as a function of resonator mirror misalignment. In addition, the behavior of the unstable resonator, observed experimentally and predicted by the simulation, in generating localized high intensity hot-spots when it is subjected to relatively large misalignment angles is reported.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Jackson, H. J. Baker, D. R. Hall, “A CO2 large area laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
    [CrossRef]
  2. R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990).
    [CrossRef]
  3. J. Nishima, K. Yoshizawa, “CO2 slab laser excited by 2.45 GHz microwave discharge,” in High-Power Gas Lasers, P. V. Avizonis, C. Freed, J. J. Kim, F. K. Tittel, eds., Proc. SPIE1225, 340–349 (1990).
    [CrossRef]
  4. R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992).
    [CrossRef]
  5. C. J. Shackleton, H. J. Baker, D. R. Hall, “Lateral and transverse mode properties of slab waveguide lasers,” Opt. Commun. 89, 423–428 (1992).
    [CrossRef]
  6. A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
    [CrossRef]
  7. J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998).
    [CrossRef]
  8. A. Faulstich, H. J. Baker, D. R. Hall, “Face pumping of thin solid-state lasers with laser diodes,” Opt. Lett. 21, 594–596 (1996).
    [CrossRef] [PubMed]
  9. Diamond Lasers Product Brochures, Coherent, Inc., http://www.cohr.com ; DC series lasers, Rofin-Sinar Laser GmbH, http://www.rofin-sinar.com/ .
  10. A. G. Fox, T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron. QE-4, 460–465 (1968).
    [CrossRef]
  11. A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970).
    [CrossRef] [PubMed]
  12. E. A. Sziklas, A. E. Siegman, “Mode calculations in unstable resonators with flowing saturable gain,” Appl. Opt. 14, 1874–1889 (1975).
    [CrossRef] [PubMed]
  13. D. B. Rensch, A. N. Chester, “Iterative diffraction calculations of transverse mode distributions in confocal unstable laser resonators,” Appl. Opt. 12, 997–1010 (1973).
    [CrossRef] [PubMed]
  14. C. S. Burrus, I. W. Selesnick, “Fast convolution and filtering,” in The Digital Signal Processing Handbook, V. K. Madessetti, D. B. Williams, eds. (CRC Press, Boca Raton, Fla., 1997).
  15. R. J. Morley, “RF excited CO2 laser amplifiers for lidar,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 1992), Chap. 5.
  16. Data courtesy of V & S Scientific, Ltd., Hertfordshire, UK.

1998 (1)

J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998).
[CrossRef]

1996 (1)

1994 (1)

A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
[CrossRef]

1992 (2)

R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992).
[CrossRef]

C. J. Shackleton, H. J. Baker, D. R. Hall, “Lateral and transverse mode properties of slab waveguide lasers,” Opt. Commun. 89, 423–428 (1992).
[CrossRef]

1989 (1)

P. E. Jackson, H. J. Baker, D. R. Hall, “A CO2 large area laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[CrossRef]

1975 (1)

1973 (1)

1970 (1)

1968 (1)

A. G. Fox, T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron. QE-4, 460–465 (1968).
[CrossRef]

Abramski, K. M.

A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
[CrossRef]

Baker, H. J.

J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998).
[CrossRef]

A. Faulstich, H. J. Baker, D. R. Hall, “Face pumping of thin solid-state lasers with laser diodes,” Opt. Lett. 21, 594–596 (1996).
[CrossRef] [PubMed]

A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
[CrossRef]

C. J. Shackleton, H. J. Baker, D. R. Hall, “Lateral and transverse mode properties of slab waveguide lasers,” Opt. Commun. 89, 423–428 (1992).
[CrossRef]

P. E. Jackson, H. J. Baker, D. R. Hall, “A CO2 large area laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[CrossRef]

Brown, R. T.

R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992).
[CrossRef]

Burrus, C. S.

C. S. Burrus, I. W. Selesnick, “Fast convolution and filtering,” in The Digital Signal Processing Handbook, V. K. Madessetti, D. B. Williams, eds. (CRC Press, Boca Raton, Fla., 1997).

Chester, A. N.

Colley, A. D.

A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
[CrossRef]

Faulstich, A.

Fox, A. G.

A. G. Fox, T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron. QE-4, 460–465 (1968).
[CrossRef]

Hall, D. R.

J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998).
[CrossRef]

A. Faulstich, H. J. Baker, D. R. Hall, “Face pumping of thin solid-state lasers with laser diodes,” Opt. Lett. 21, 594–596 (1996).
[CrossRef] [PubMed]

A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
[CrossRef]

C. J. Shackleton, H. J. Baker, D. R. Hall, “Lateral and transverse mode properties of slab waveguide lasers,” Opt. Commun. 89, 423–428 (1992).
[CrossRef]

P. E. Jackson, H. J. Baker, D. R. Hall, “A CO2 large area laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[CrossRef]

Hall, Th.

R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990).
[CrossRef]

Hart, R. A.

R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992).
[CrossRef]

Jackson, P. E.

P. E. Jackson, H. J. Baker, D. R. Hall, “A CO2 large area laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[CrossRef]

Li, T.

A. G. Fox, T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron. QE-4, 460–465 (1968).
[CrossRef]

Miller, H. Y.

Morley, R. J.

J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998).
[CrossRef]

R. J. Morley, “RF excited CO2 laser amplifiers for lidar,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 1992), Chap. 5.

Murray, M. W.

R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992).
[CrossRef]

Newman, L. A.

R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992).
[CrossRef]

Nishima, J.

J. Nishima, K. Yoshizawa, “CO2 slab laser excited by 2.45 GHz microwave discharge,” in High-Power Gas Lasers, P. V. Avizonis, C. Freed, J. J. Kim, F. K. Tittel, eds., Proc. SPIE1225, 340–349 (1990).
[CrossRef]

Nowack, R.

R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990).
[CrossRef]

Opower, H.

R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990).
[CrossRef]

Rensch, D. B.

Schaefer, U.

R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990).
[CrossRef]

Selesnick, I. W.

C. S. Burrus, I. W. Selesnick, “Fast convolution and filtering,” in The Digital Signal Processing Handbook, V. K. Madessetti, D. B. Williams, eds. (CRC Press, Boca Raton, Fla., 1997).

Shackleton, C. J.

C. J. Shackleton, H. J. Baker, D. R. Hall, “Lateral and transverse mode properties of slab waveguide lasers,” Opt. Commun. 89, 423–428 (1992).
[CrossRef]

Siegman, A. E.

Sziklas, E. A.

Villarreal, F.

A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
[CrossRef]

Wendland, J. J.

J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998).
[CrossRef]

Wessel, K.

R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990).
[CrossRef]

Yoshizawa, K.

J. Nishima, K. Yoshizawa, “CO2 slab laser excited by 2.45 GHz microwave discharge,” in High-Power Gas Lasers, P. V. Avizonis, C. Freed, J. J. Kim, F. K. Tittel, eds., Proc. SPIE1225, 340–349 (1990).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

P. E. Jackson, H. J. Baker, D. R. Hall, “A CO2 large area laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[CrossRef]

A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994).
[CrossRef]

J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992).
[CrossRef]

A. G. Fox, T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron. QE-4, 460–465 (1968).
[CrossRef]

Opt. Commun. (1)

C. J. Shackleton, H. J. Baker, D. R. Hall, “Lateral and transverse mode properties of slab waveguide lasers,” Opt. Commun. 89, 423–428 (1992).
[CrossRef]

Opt. Lett. (1)

Other (6)

Diamond Lasers Product Brochures, Coherent, Inc., http://www.cohr.com ; DC series lasers, Rofin-Sinar Laser GmbH, http://www.rofin-sinar.com/ .

R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990).
[CrossRef]

J. Nishima, K. Yoshizawa, “CO2 slab laser excited by 2.45 GHz microwave discharge,” in High-Power Gas Lasers, P. V. Avizonis, C. Freed, J. J. Kim, F. K. Tittel, eds., Proc. SPIE1225, 340–349 (1990).
[CrossRef]

C. S. Burrus, I. W. Selesnick, “Fast convolution and filtering,” in The Digital Signal Processing Handbook, V. K. Madessetti, D. B. Williams, eds. (CRC Press, Boca Raton, Fla., 1997).

R. J. Morley, “RF excited CO2 laser amplifiers for lidar,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 1992), Chap. 5.

Data courtesy of V & S Scientific, Ltd., Hertfordshire, UK.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of an unstable resonator with some beam profile predictions of the simulation.

Fig. 2
Fig. 2

Schematic diagram illustrating the simulation routine.

Fig. 3
Fig. 3

Illustration of the technique for convolution evaluation.

Fig. 4
Fig. 4

Simulation method: (a) gain sheets used, e.g., by Sziklas and Siegman12; (b) gain sections used in the present work.

Fig. 5
Fig. 5

Experimental arrangement for imaging and near-field measurement of intracavity beam profiles: EFL, effective focal length.

Fig. 6
Fig. 6

Variation of laser power output with front mirror tilt angle.

Fig. 7
Fig. 7

Intracavity laser beam lateral beam intensity profile at the plane of the front resonator mirror for the case of a well-aligned resonator.

Fig. 8
Fig. 8

Intracavity laser beam lateral beam intensity profile at the plane of the front resonator mirror for the case of a tilted front mirror: (a) tilt, -7.94 mrad; (b) tilt, +7.94 mrad.

Fig. 9
Fig. 9

Intracavity laser beam lateral beam intensity profile at the plane of the front resonator mirror for the case of a tilted front mirror: (a) tilt, -15.9 mrad; (b) tilt, +15.9 mrad.

Fig. 10
Fig. 10

Intracavity laser beam lateral beam intensity profile at the plane of the front resonator mirror for the case of a tilted front mirror with a tilt angle of ±31.8 mrad.

Fig. 11
Fig. 11

Intracavity laser beam lateral beam intensity profile at the plane of the front resonator mirror for the case of a tilted front mirror with a tilt angle of ±39.7 mrad.

Fig. 12
Fig. 12

Intracavity laser beam lateral beam intensity profile at the plane of the front resonator mirror for the case of a tilted front mirror with a tilt angle of +46.8, -45.6 mrad.

Fig. 13
Fig. 13

High-intensity intracavity radiation peak at the plane of the front mirror caused by large-angle mirror misalignments: (a) tilt, -54 mrad; (b) tilt, +51.6 mrad.

Fig. 14
Fig. 14

Simulation prediction of the peak laser beam intensity across the front mirror when the mirror is subjected to a large angle tilt under normal excitation conditions, producing 110 W of average power.

Fig. 15
Fig. 15

Simulated intracavity laser beam intensity and phase on each resonator mirror for the planar waveguide laser, under normal excitation conditions, producing 110 W of average power.

Fig. 16
Fig. 16

Intracavity laser beam profiles after the phase change that is due to mirror misalignment is removed.

Tables (1)

Tables Icon

Table 1 Parameter Values Used in the Simulation and Experiments

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ux, z=j/λ  u0x0, z0expj 2πλ rx, z, x0, z0rx, z, x0, z01/2dx0,
u1x, z=ux, zexpaz-z01+Ix, z/Isat+Sem,
u1x, z=ux, zAx, z, ux, zexp{iBx, z, ux, z,
u0x, zKu0x, z,

Metrics