Abstract

We present the experimental study of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift. The isolator is equipped with an optical interferometer composed of tapered couplers, nonreciprocal phase shifters, and a reciprocal phase shifter. The nonreciprocal phase shifter was constructed by wafer direct bonding between the semiconductor guiding layer and the magneto-optic cladding layer. The isolator, designed for the 1.55-µm wavelength, was fabricated to investigate the characteristics of each component. By applying an external magnetic field to the nonreciprocal phase shifter, we achieved an isolation ratio of approximately 4.9 dB in the interferometric isolator.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
    [CrossRef]
  2. T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
    [CrossRef]
  3. T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986).
    [CrossRef]
  4. Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
    [CrossRef]
  5. H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
    [CrossRef]
  6. H. Yokoi, T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33, 1787–1788 (1997).
    [CrossRef]
  7. S. H. Jones, K. M. Lau, “Selective area growth of high quality GaAs by OMCVD using native oxide masks,” J. Electrochem. Soc. 134, 3149–3155 (1987).
    [CrossRef]
  8. M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
    [CrossRef]
  9. Y. D. Galeuchet, P. Roentgen, V. Graf, “Buried GaInAs/InP layers grown on nonplanar substrates by one-step low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 53, 2638–2640 (1988).
    [CrossRef]
  10. Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
    [CrossRef]
  11. T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
    [CrossRef]
  12. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F-J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–823 (1998).
    [CrossRef]
  13. M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
    [CrossRef]
  14. T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
    [CrossRef]
  15. T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
    [CrossRef]
  16. H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
    [CrossRef]
  17. S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
    [CrossRef]
  18. T. K. Sudoh, Y. Nakano, K. Tada, “Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change,” Electron. Lett. 33, 216–217 (1997).
    [CrossRef]
  19. T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997).
    [CrossRef]

1999 (3)

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

1998 (1)

1997 (3)

T. K. Sudoh, Y. Nakano, K. Tada, “Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change,” Electron. Lett. 33, 216–217 (1997).
[CrossRef]

T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997).
[CrossRef]

H. Yokoi, T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33, 1787–1788 (1997).
[CrossRef]

1996 (1)

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

1994 (1)

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

1993 (1)

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

1990 (1)

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

1988 (3)

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
[CrossRef]

Y. D. Galeuchet, P. Roentgen, V. Graf, “Buried GaInAs/InP layers grown on nonplanar substrates by one-step low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 53, 2638–2640 (1988).
[CrossRef]

1987 (1)

S. H. Jones, K. M. Lau, “Selective area growth of high quality GaAs by OMCVD using native oxide masks,” J. Electrochem. Soc. 134, 3149–3155 (1987).
[CrossRef]

1986 (2)

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986).
[CrossRef]

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

1982 (2)

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

Abe, M.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Bahlmann, N.

Cai, Y.

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

Chandrasekhara, V.

Chu, S. T.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Davies, J. I.

M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
[CrossRef]

Dötsch, H.

Endo, S.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Erdmann, A.

Futakuchi, N.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Galeuchet, Y. D.

Y. D. Galeuchet, P. Roentgen, V. Graf, “Buried GaInAs/InP layers grown on nonplanar substrates by one-step low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 53, 2638–2640 (1988).
[CrossRef]

Gerhardt, R.

Gomi, M.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Graf, V.

Y. D. Galeuchet, P. Roentgen, V. Graf, “Buried GaInAs/InP layers grown on nonplanar substrates by one-step low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 53, 2638–2640 (1988).
[CrossRef]

Griffith, I.

M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
[CrossRef]

Harada, T.

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986).
[CrossRef]

Hertel, P.

Ida, T.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Inuzuka, H.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Jones, S. H.

S. H. Jones, K. M. Lau, “Selective area growth of high quality GaAs by OMCVD using native oxide masks,” J. Electrochem. Soc. 134, 3149–3155 (1987).
[CrossRef]

Kaida, N.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Kikuchi, T.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Kokubun, Y.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Kumano, M.

T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997).
[CrossRef]

Lau, K. M.

S. H. Jones, K. M. Lau, “Selective area growth of high quality GaAs by OMCVD using native oxide masks,” J. Electrochem. Soc. 134, 3149–3155 (1987).
[CrossRef]

Lehmann, R.

Marshall, A. C.

M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
[CrossRef]

Mashimo, S.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Mizumoto, T.

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33, 1787–1788 (1997).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

Naito, Y.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

Nakano, Y.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

T. K. Sudoh, Y. Nakano, K. Tada, “Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change,” Electron. Lett. 33, 216–217 (1997).
[CrossRef]

T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997).
[CrossRef]

Okamura, Y.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Oochi, K.

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986).
[CrossRef]

Pan, W.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Riffat, J. R.

M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
[CrossRef]

Roentgen, P.

Y. D. Galeuchet, P. Roentgen, V. Graf, “Buried GaInAs/InP layers grown on nonplanar substrates by one-step low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 53, 2638–2640 (1988).
[CrossRef]

Salz, D.

Sato, S.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Satoh, S.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Schröteler, F-J.

Scott, M. D.

M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
[CrossRef]

Shimizu, M.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Shinjo, N.

Shintaku, T.

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

Sudoh, T. K.

T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997).
[CrossRef]

T. K. Sudoh, Y. Nakano, K. Tada, “Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change,” Electron. Lett. 33, 216–217 (1997).
[CrossRef]

Suzuki, S.

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

Tada, K.

T. K. Sudoh, Y. Nakano, K. Tada, “Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change,” Electron. Lett. 33, 216–217 (1997).
[CrossRef]

T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997).
[CrossRef]

Takano, T.

Uno, T.

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

Wallenhorst, M.

Waniishi, T.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Yamamoto, S.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

Yokoi, H.

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33, 1787–1788 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. D. Galeuchet, P. Roentgen, V. Graf, “Buried GaInAs/InP layers grown on nonplanar substrates by one-step low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 53, 2638–2640 (1988).
[CrossRef]

Electron. Lett. (2)

H. Yokoi, T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33, 1787–1788 (1997).
[CrossRef]

T. K. Sudoh, Y. Nakano, K. Tada, “Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change,” Electron. Lett. 33, 216–217 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997).
[CrossRef]

S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999).
[CrossRef]

IEEE Trans. Magn. (1)

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982).
[CrossRef]

J. Appl. Phys. (1)

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

J. Cryst. Growth (1)

M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988).
[CrossRef]

J. Electrochem. Soc. (1)

S. H. Jones, K. M. Lau, “Selective area growth of high quality GaAs by OMCVD using native oxide masks,” J. Electrochem. Soc. 134, 3149–3155 (1987).
[CrossRef]

J. Lightwave Technol. (4)

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990).
[CrossRef]

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986).
[CrossRef]

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986).
[CrossRef]

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F-J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–823 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (3)

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996).
[CrossRef]

H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Integrated optical isolator with a semiconductor guiding layer. An external magnetic field is applied in an antiparallel direction to achieve a push–pull nonreciprocal phase shift.

Fig. 2
Fig. 2

Schematic diagram of a three-waveguide tapered coupler. The width of the central waveguide varies linearly along the propagation direction. The waveguide parameters are in micrometers.

Fig. 3
Fig. 3

Basic geometry of a three-layer slab waveguide.

Fig. 4
Fig. 4

Calculated nonreciprocal phase shift and required propagation distance of the waveguide with a Ce:YIG/GaInAsP/InP structure at 1.55-µm wavelength.

Fig. 5
Fig. 5

Experimental setup for the measurement of coupling characteristics of a three-waveguide tapered coupler. The phase difference between two incident waves varies because of the refractive-index change in one branch of the splitter.

Fig. 6
Fig. 6

Branching ratio of the three-waveguide tapered coupler for wavelengths that range between 1.50 and 1.58 µm.

Fig. 7
Fig. 7

Coupling characteristics of the three-waveguide tapered coupler at 1.55-µm wavelength.

Fig. 8
Fig. 8

Optical output power from a central waveguide depending on the power applied to the electrode in the splitter.

Fig. 9
Fig. 9

Histogram of the percentage of output from the central waveguide of three ports.

Fig. 10
Fig. 10

Near-field patterns observed at the output facet. The output range from the central waveguide is (a) 0–10%, (b) 10–20%, (c) 30–40%.

Fig. 11
Fig. 11

(a) External magnetic field in the interferometer and (b) the near-field pattern observed at the output facet when the magnetic field is applied to an outward direction.

Fig. 12
Fig. 12

(a) External magnetic field in the interferometer and (b) the near-field pattern observed at the output facet when the magnetic field is applied to an inward direction.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

εi˜=εx000εyjα0-jαεzi, i=1, 2, 3.
α=2nΘfk0,
×E=-jωμ0H,
×H=jωεεi˜ E
/x=0.
E=0, Ey, Ezexpjωt-βz,
H=Hx, 0, 0expjωt-βz.
2Hxy2+k02εyεz-α2εy-εzεy β2Hx=0.
Ez=jεyωε0εyεz-α2Hxy-αεy βHx.
εi˜=ε000ε000εi, i=1, 3.
tankyd=kyε¯y2η3ε3+η1ε1kyε¯y22-η1ε1η3ε3+η3ε3-η1ε1αεy2βε¯y2+αεy2βε¯y22,
β2=η12+ε1k02=ε¯z2k02-εy2εz2 ky2=η32+ε3k02,
ε¯y2=εy2εz2-α2εy2,
ε¯z2=εy2εz2-α2εz2.
LNRPS=π2|Δβ|.
tankyd=kyη1+η3ky2-η1η3,
β2=η12+ε1k02=εxk02-ky2=η32+ε3k02.

Metrics