Abstract

Recent improvements in design have made it possible to build Nd:YAG lasers with both high pulse energy and high beam quality. These lasers are particularly suited for percussion drilling of holes of as much as 1-mm diameter thick (a few millimeters) metal parts. An example application is the production of cooling holes in aeroengine components for which 1-ms duration, 30-J energy laser pulses produce holes of sufficient quality much more efficiently than with a laser trepanning process. Fiber optic delivery of the laser beam would be advantageous, particularly when one is processing complex three-dimensional structures. However, lasers for percussion drilling are available only with conventional bulk-optic beam delivery because of laser-induced damage problems with the small-diameter (approximately 200–400-µm) fibers that would be required for preserving necessary beam quality. We report measurements of beam degradation in step-index optical fibers with an input beam quality corresponding to an M 2 of 22. We then show that the laser-induced damage threshold of 400-µm core-diameter optical fibers can be increased significantly by a CO2 laser treatment step following the mechanical polishing routine. This increase in laser-induced damage threshold is sufficient to propagate 25-J, 1-ms laser pulses with a 400-µm core-diameter optical fiber and an output M 2 of 31.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bostanjoglo, I. Saraday, T. Beck, H. Weber, “Processing of Ni-based aero engine components with repetitively Q-switched Nd:YAG lasers,” in High-Power Lasers: Applications and Emerging Applications, M. R. Osborne, G. Sayegh, eds., Proc. SPIE2789, 145–157 (1996).
  2. R. M. Wood, “Summary of the factors affecting the power and energy capabilities of optical fibres,” in Laser Techniques for Surface Science II, J. M. Hicks, W. Ho, H.-L. Dai, eds., Proc. SPIE2870, 457–467 (1996).
  3. R. E. Setchell, “An optimized fiber delivery system for Q-switched, Nd:YAG lasers,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 608–619 (1996).
  4. B. C. Stuart, S. Herman, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. I. Experimental,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 568–576 (1994).
  5. D. Su, A. A. P. Boechat, J. D. C. Jones, “Beam delivery by large-core fibers: effect of launching conditions on near-field output profile,” Appl. Opt. 31, 5816–5821 (1992).
    [CrossRef] [PubMed]
  6. M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Adam Hilger, Bristol, UK, 1989).
  7. T. Beck, G. Bostanjoglo, N. Kugler, K. Richter, H. Weber, “Laser beam drilling applications in novel materials for the aircraft industry,” in Proceedings of ICALEO ’97, R. Fabbro, A. Kar, A. Matsunawa, eds. (Laser Institute of America, Orlando, Fla., 1997), Sec. E, pp. 93–102.
  8. R. M. Wood, Laser Damage in Optical Materials (Adam Hilger, Bristol, UK, 1986).
  9. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).
  10. P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
    [CrossRef] [PubMed]
  11. R. E. Setchell, P. Klingsporn, “Laser-induced damage studies on step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 56–66 (1991).
  12. F. Vega, N. Lupón, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
    [CrossRef]
  13. R. E. Setchell, “Laser-induced damage in step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials: 1992, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1848, 15–23 (1991).
  14. D. Kitriotis, L. D. Merkle, “Multiple laser-induced damage phenomena in silicates,” Appl. Opt. 28, 949–956 (1989).
    [CrossRef] [PubMed]

1998 (1)

F. Vega, N. Lupón, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[CrossRef]

1992 (1)

1989 (1)

1982 (1)

Beck, T.

G. Bostanjoglo, I. Saraday, T. Beck, H. Weber, “Processing of Ni-based aero engine components with repetitively Q-switched Nd:YAG lasers,” in High-Power Lasers: Applications and Emerging Applications, M. R. Osborne, G. Sayegh, eds., Proc. SPIE2789, 145–157 (1996).

T. Beck, G. Bostanjoglo, N. Kugler, K. Richter, H. Weber, “Laser beam drilling applications in novel materials for the aircraft industry,” in Proceedings of ICALEO ’97, R. Fabbro, A. Kar, A. Matsunawa, eds. (Laser Institute of America, Orlando, Fla., 1997), Sec. E, pp. 93–102.

Boechat, A. A. P.

Bostanjoglo, G.

G. Bostanjoglo, I. Saraday, T. Beck, H. Weber, “Processing of Ni-based aero engine components with repetitively Q-switched Nd:YAG lasers,” in High-Power Lasers: Applications and Emerging Applications, M. R. Osborne, G. Sayegh, eds., Proc. SPIE2789, 145–157 (1996).

T. Beck, G. Bostanjoglo, N. Kugler, K. Richter, H. Weber, “Laser beam drilling applications in novel materials for the aircraft industry,” in Proceedings of ICALEO ’97, R. Fabbro, A. Kar, A. Matsunawa, eds. (Laser Institute of America, Orlando, Fla., 1997), Sec. E, pp. 93–102.

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

Cebrian, J. A.

F. Vega, N. Lupón, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[CrossRef]

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

Herman, S.

B. C. Stuart, S. Herman, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. I. Experimental,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 568–576 (1994).

Jones, J. D. C.

Kitriotis, D.

Klingsporn, P.

R. E. Setchell, P. Klingsporn, “Laser-induced damage studies on step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 56–66 (1991).

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

Kugler, N.

T. Beck, G. Bostanjoglo, N. Kugler, K. Richter, H. Weber, “Laser beam drilling applications in novel materials for the aircraft industry,” in Proceedings of ICALEO ’97, R. Fabbro, A. Kar, A. Matsunawa, eds. (Laser Institute of America, Orlando, Fla., 1997), Sec. E, pp. 93–102.

Laguarta, F.

F. Vega, N. Lupón, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[CrossRef]

Lowdermilk, W. H.

Lupón, N.

F. Vega, N. Lupón, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[CrossRef]

Merkle, L. D.

Milam, D.

Nichols, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

Perry, M. D.

B. C. Stuart, S. Herman, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. I. Experimental,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 568–576 (1994).

Raether, R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

Richter, K.

T. Beck, G. Bostanjoglo, N. Kugler, K. Richter, H. Weber, “Laser beam drilling applications in novel materials for the aircraft industry,” in Proceedings of ICALEO ’97, R. Fabbro, A. Kar, A. Matsunawa, eds. (Laser Institute of America, Orlando, Fla., 1997), Sec. E, pp. 93–102.

Saraday, I.

G. Bostanjoglo, I. Saraday, T. Beck, H. Weber, “Processing of Ni-based aero engine components with repetitively Q-switched Nd:YAG lasers,” in High-Power Lasers: Applications and Emerging Applications, M. R. Osborne, G. Sayegh, eds., Proc. SPIE2789, 145–157 (1996).

Sasnett, M. W.

M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Adam Hilger, Bristol, UK, 1989).

Setchell, R. E.

R. E. Setchell, “An optimized fiber delivery system for Q-switched, Nd:YAG lasers,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 608–619 (1996).

R. E. Setchell, “Laser-induced damage in step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials: 1992, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1848, 15–23 (1991).

R. E. Setchell, P. Klingsporn, “Laser-induced damage studies on step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 56–66 (1991).

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

Stuart, B. C.

B. C. Stuart, S. Herman, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. I. Experimental,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 568–576 (1994).

Su, D.

Temple, P. A.

Thomas, I.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

Vega, F.

F. Vega, N. Lupón, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[CrossRef]

Weber, H.

G. Bostanjoglo, I. Saraday, T. Beck, H. Weber, “Processing of Ni-based aero engine components with repetitively Q-switched Nd:YAG lasers,” in High-Power Lasers: Applications and Emerging Applications, M. R. Osborne, G. Sayegh, eds., Proc. SPIE2789, 145–157 (1996).

T. Beck, G. Bostanjoglo, N. Kugler, K. Richter, H. Weber, “Laser beam drilling applications in novel materials for the aircraft industry,” in Proceedings of ICALEO ’97, R. Fabbro, A. Kar, A. Matsunawa, eds. (Laser Institute of America, Orlando, Fla., 1997), Sec. E, pp. 93–102.

Wood, R. M.

R. M. Wood, “Summary of the factors affecting the power and energy capabilities of optical fibres,” in Laser Techniques for Surface Science II, J. M. Hicks, W. Ho, H.-L. Dai, eds., Proc. SPIE2870, 457–467 (1996).

R. M. Wood, Laser Damage in Optical Materials (Adam Hilger, Bristol, UK, 1986).

Appl. Opt. (3)

Opt. Eng. (1)

F. Vega, N. Lupón, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[CrossRef]

Other (10)

R. E. Setchell, “Laser-induced damage in step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials: 1992, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1848, 15–23 (1991).

G. Bostanjoglo, I. Saraday, T. Beck, H. Weber, “Processing of Ni-based aero engine components with repetitively Q-switched Nd:YAG lasers,” in High-Power Lasers: Applications and Emerging Applications, M. R. Osborne, G. Sayegh, eds., Proc. SPIE2789, 145–157 (1996).

R. M. Wood, “Summary of the factors affecting the power and energy capabilities of optical fibres,” in Laser Techniques for Surface Science II, J. M. Hicks, W. Ho, H.-L. Dai, eds., Proc. SPIE2870, 457–467 (1996).

R. E. Setchell, “An optimized fiber delivery system for Q-switched, Nd:YAG lasers,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 608–619 (1996).

B. C. Stuart, S. Herman, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. I. Experimental,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 568–576 (1994).

M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Adam Hilger, Bristol, UK, 1989).

T. Beck, G. Bostanjoglo, N. Kugler, K. Richter, H. Weber, “Laser beam drilling applications in novel materials for the aircraft industry,” in Proceedings of ICALEO ’97, R. Fabbro, A. Kar, A. Matsunawa, eds. (Laser Institute of America, Orlando, Fla., 1997), Sec. E, pp. 93–102.

R. M. Wood, Laser Damage in Optical Materials (Adam Hilger, Bristol, UK, 1986).

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 356–364 (1998).

R. E. Setchell, P. Klingsporn, “Laser-induced damage studies on step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 56–66 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for launching a laser beam into an optical fiber and measuring the characteristics of the transmitted beam.

Fig. 2
Fig. 2

Beam propagation parameter M 2 achievable with step-index fibers of several core diameters.

Fig. 3
Fig. 3

Typical marks on a 400-µm core-diameter optical fiber after mechanical polishing (300× magnification).

Fig. 4
Fig. 4

Setup for CO2 laser treatment of optical fibers with simultaneous monitoring with a CCD camera.

Fig. 5
Fig. 5

Surface appearance of 400-µm fiber after treatment with a CO2 laser beam (300× magnification).

Fig. 6
Fig. 6

Optical microscope image of surface characteristics of a CO2 laser–treated fiber after damage with a 28-J, 1-ms Nd:YAG laser pulse for a focus spot diameter of 180 µm.

Fig. 7
Fig. 7

Atomic-force microscope image of typical surface characteristics of a fiber after damage with a 28-J, 1-ms Nd:YAG laser pulse. Features are almost 1 µm deep and 5–10 µm in length and width.

Tables (1)

Tables Icon

Table 1 LIDT of Nd:YAG Laser Pulses for 400-µm Fibers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M2=D0Θ4λ/π,

Metrics