Abstract

An ice crystal halo display that contains several previously unknown halo phenomena was observed in Northern Chile. Analysis of computer simulations of the halos demonstrates that most of the new halo arcs in the display can be explained by the presence of airborne and preferentially oriented crystals of cubic ice. These observations therefore provide evidence of the existence of the cubic phase of ice in the Earth’s atmosphere.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series, (American Geophysical Union, Washington, D.C, 1994).
  2. M. Pekkola, M. Riikonen, J. Ruoskanen, J. Moilanen, “Halo arcs from airborne, pyramidal ice crystals falling with their c axes in vertical orientation,” Appl. Opt. 37, 1435–1440 (1998).
    [CrossRef]
  3. M. Sillanpää, J. Moilanen, M. Pekkola, M. Penttinen, J. Piikki, “Unusual pyramidal ice in the atmosphere as the origin of elliptical halos,” Appl. Opt. 38, 5089–5095 (1999).
    [CrossRef]
  4. E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
    [CrossRef] [PubMed]
  5. E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
    [CrossRef]
  6. A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?,” J. Atmos. Sci. 44, 3304–3308 (1987).
    [CrossRef]
  7. N. Sato, K. Kikuchi, “Crystal structure of typical snow crystals of low temperature type,” J. Meteorol. Soc. Jpn. 60, 521–528 (1989).
  8. R. P. Turco, “Noctilucent clouds: simulation studies of their genesis, properties and global influences,” Planet. Space Sci. 30, 1147–1191 (1982).
    [CrossRef]
  9. E. Mayer, A. Hallbrucker, “Cubic ice from liquid water,” Nature (London) 325, 601–602 (1987).
    [CrossRef]
  10. P. V. Hobbs, Ice physics (Clarendon, Oxford, 1974).
  11. G. P. Arnold, E. D. Finch, S. W. Rabideau, R. G. Wenzel, “Neutron-diffraction study of ice polymorphs, III. Ice Ic,” J. Chem. Phys. 49, 4365–4369 (1968).
    [CrossRef]
  12. M. Kurnai, “Hexagonal and cubic ice at low temperatures,” J. Glaciol. 7, 95–108 (1968).
  13. F. Pattloch, E. Tränkle, “Monte Carlo simulation and analysis of halo phenomena,” J. Opt. Soc. Am. A 1, 520–526 (1984).
    [CrossRef]
  14. S. D. Gedzelman, “Simulating rainbows and halos in color,” Appl. Opt. 33, 4607–4613 (1994).
    [CrossRef] [PubMed]
  15. J. Moilanen, “New halo in Northern Finland,” Weather 53, 241–243 (1998).
    [CrossRef]
  16. C. Magono, S. Fujita, T. Taniguchi, “Unusual type of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
    [CrossRef]

1999 (1)

1998 (2)

1994 (1)

1989 (1)

N. Sato, K. Kikuchi, “Crystal structure of typical snow crystals of low temperature type,” J. Meteorol. Soc. Jpn. 60, 521–528 (1989).

1987 (2)

E. Mayer, A. Hallbrucker, “Cubic ice from liquid water,” Nature (London) 325, 601–602 (1987).
[CrossRef]

A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?,” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

1984 (1)

1983 (1)

E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
[CrossRef]

1982 (1)

R. P. Turco, “Noctilucent clouds: simulation studies of their genesis, properties and global influences,” Planet. Space Sci. 30, 1147–1191 (1982).
[CrossRef]

1981 (1)

E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

1979 (1)

C. Magono, S. Fujita, T. Taniguchi, “Unusual type of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

1968 (2)

G. P. Arnold, E. D. Finch, S. W. Rabideau, R. G. Wenzel, “Neutron-diffraction study of ice polymorphs, III. Ice Ic,” J. Chem. Phys. 49, 4365–4369 (1968).
[CrossRef]

M. Kurnai, “Hexagonal and cubic ice at low temperatures,” J. Glaciol. 7, 95–108 (1968).

Arnold, G. P.

G. P. Arnold, E. D. Finch, S. W. Rabideau, R. G. Wenzel, “Neutron-diffraction study of ice polymorphs, III. Ice Ic,” J. Chem. Phys. 49, 4365–4369 (1968).
[CrossRef]

Finch, E. D.

G. P. Arnold, E. D. Finch, S. W. Rabideau, R. G. Wenzel, “Neutron-diffraction study of ice polymorphs, III. Ice Ic,” J. Chem. Phys. 49, 4365–4369 (1968).
[CrossRef]

Fujita, S.

C. Magono, S. Fujita, T. Taniguchi, “Unusual type of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Gedzelman, S. D.

Hallbrucker, A.

E. Mayer, A. Hallbrucker, “Cubic ice from liquid water,” Nature (London) 325, 601–602 (1987).
[CrossRef]

Hobbs, P. V.

P. V. Hobbs, Ice physics (Clarendon, Oxford, 1974).

Kikuchi, K.

N. Sato, K. Kikuchi, “Crystal structure of typical snow crystals of low temperature type,” J. Meteorol. Soc. Jpn. 60, 521–528 (1989).

Knight, C. A.

A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?,” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

Kurnai, M.

M. Kurnai, “Hexagonal and cubic ice at low temperatures,” J. Glaciol. 7, 95–108 (1968).

Magono, C.

C. Magono, S. Fujita, T. Taniguchi, “Unusual type of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Mayer, E.

E. Mayer, A. Hallbrucker, “Cubic ice from liquid water,” Nature (London) 325, 601–602 (1987).
[CrossRef]

Moilanen, J.

Pattloch, F.

Pekkola, M.

Penttinen, M.

Piikki, J.

Rabideau, S. W.

G. P. Arnold, E. D. Finch, S. W. Rabideau, R. G. Wenzel, “Neutron-diffraction study of ice polymorphs, III. Ice Ic,” J. Chem. Phys. 49, 4365–4369 (1968).
[CrossRef]

Riikonen, M.

Ruoskanen, J.

Sato, N.

N. Sato, K. Kikuchi, “Crystal structure of typical snow crystals of low temperature type,” J. Meteorol. Soc. Jpn. 60, 521–528 (1989).

Sillanpää, M.

Taniguchi, T.

C. Magono, S. Fujita, T. Taniguchi, “Unusual type of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Tape, W.

W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series, (American Geophysical Union, Washington, D.C, 1994).

Tränkle, E.

Turco, R. P.

R. P. Turco, “Noctilucent clouds: simulation studies of their genesis, properties and global influences,” Planet. Space Sci. 30, 1147–1191 (1982).
[CrossRef]

Weinheimer, A. J.

A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?,” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

Wenzel, R. G.

G. P. Arnold, E. D. Finch, S. W. Rabideau, R. G. Wenzel, “Neutron-diffraction study of ice polymorphs, III. Ice Ic,” J. Chem. Phys. 49, 4365–4369 (1968).
[CrossRef]

Whalley, E.

E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
[CrossRef]

E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

Appl. Opt. (3)

J. Atmos. Sci. (2)

C. Magono, S. Fujita, T. Taniguchi, “Unusual type of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?,” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

J. Chem. Phys. (1)

G. P. Arnold, E. D. Finch, S. W. Rabideau, R. G. Wenzel, “Neutron-diffraction study of ice polymorphs, III. Ice Ic,” J. Chem. Phys. 49, 4365–4369 (1968).
[CrossRef]

J. Glaciol. (1)

M. Kurnai, “Hexagonal and cubic ice at low temperatures,” J. Glaciol. 7, 95–108 (1968).

J. Meteorol. Soc. Jpn. (1)

N. Sato, K. Kikuchi, “Crystal structure of typical snow crystals of low temperature type,” J. Meteorol. Soc. Jpn. 60, 521–528 (1989).

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
[CrossRef]

Nature (London) (1)

E. Mayer, A. Hallbrucker, “Cubic ice from liquid water,” Nature (London) 325, 601–602 (1987).
[CrossRef]

Planet. Space Sci. (1)

R. P. Turco, “Noctilucent clouds: simulation studies of their genesis, properties and global influences,” Planet. Space Sci. 30, 1147–1191 (1982).
[CrossRef]

Science (1)

E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

Weather (1)

J. Moilanen, “New halo in Northern Finland,” Weather 53, 241–243 (1998).
[CrossRef]

Other (2)

W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series, (American Geophysical Union, Washington, D.C, 1994).

P. V. Hobbs, Ice physics (Clarendon, Oxford, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photographs of the display at solar elevation h of approximately (a) 42°, (b) 27, (c) 12°, (d) -1°, (e) 66°. The photographs in (a)–(d) were taken on 27 November; the photograph in 1(e) is from the next day. The photograph in (e) is slanted, with the horizon at the lower right-hand corner. Image contrast was enhanced by digital image processing to compensate for the reduced resolution in reproduction. We processed the images by first applying an embossed filter and then by increasing the black-and-white image contrast to an optimal value. The processed and the original images of the halo display can be viewed at http://www.iki.fi/mika.sillanpaa/ichalos.

Fig. 2
Fig. 2

Crystals of cubic ice to simulate the halo display: (a) population C-I showing the orientation and the numbering of crystal faces and (b) populations C-II and C-III. Crystals in population C-II are randomly oriented, in C-III they are not. C-III was used only for the simulation of Fig. 1(d).

Fig. 3
Fig. 3

Pyramidal crystals of hexagonal ice for simulation of the halo display: (a) population H-I showing the orientation and the numbering of the crystal faces and (b) population H-II. Crystals in the H-II population are almost randomly oriented with strong deviation of the c-axis orientation.

Fig. 4
Fig. 4

Outcome of simulations at the following solar elevations h: (a) 42°, (b) 27, (c) 12°, (d) -1°, (e) 66°. The horizon is marked by a solid curve (only arcs above the horizon are shown in the photographs).

Fig. 5
Fig. 5

Atmospheric temperature recordings below 273 K for Antofagasta on 28 November 1997 at 09:00 local time.

Tables (2)

Tables Icon

Table 1 Parameters for Simulationsa

Tables Icon

Table 2 Ray Paths for the Halos and Arcs that Appear in the Simulationsa

Metrics