Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rotational vibrational–rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment

Not Accessible

Your library or personal account may give you access

Abstract

A single-laser Raman differential absorption lidar (DIAL) for ozone measurements in clouds is proposed. An injection-locked XeCl excimer laser serves as the radiation source. The ozone molecule number density is calculated from the differential absorption of the anti-Stokes rotational Raman return signals from molecular nitrogen and oxygen as the on-resonance wavelength and the vibrational–rotational Raman backscattering from molecular nitrogen or oxygen as the off-resonance wavelength. Model calculations show that the main advantage of the new rotational vibrational–rotational (RVR) Raman DIAL over conventional Raman DIAL is a 70–85% reduction in the wavelength-dependent effects of cloud-particle scattering on the measured ozone concentration; furthermore the complexity of the apparatus is reduced substantially. We describe a RVR Raman DIAL setup that uses a narrow-band interference-filter polychromator as the lidar receiver. Single-laser ozone measurements in the troposphere and lower stratosphere are presented, and it is shown that on further improvement of the receiver performance, ozone measurements in clouds are attainable with the filter–polychromator approach.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements

Shiv R. Pal and Luc R. Bissonnette
Appl. Opt. 37(27) 6500-6510 (1998)

Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere

A. Papayannis, G. Ancellet, J. Pelon, and G. Mégie
Appl. Opt. 29(4) 467-476 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved