Abstract

A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ≳0.1 km-1, the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986).
    [CrossRef]
  2. P. J. Crutzen, F. Arnold, “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’,” Nature (London) 324, 651–655 (1986).
    [CrossRef]
  3. M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987).
    [CrossRef] [PubMed]
  4. D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
    [CrossRef]
  5. H. Jäger, K. Wege, “Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions,” J. Atmos. Chem. 10, 273–287 (1990).
    [CrossRef]
  6. G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
    [CrossRef] [PubMed]
  7. X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994).
    [CrossRef]
  8. A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
    [CrossRef]
  9. J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990).
    [CrossRef]
  10. J. E. Jonson, I. S. A. Isaksen, “Tropospheric ozone chemistry: the impact of cloud chemistry,” J. Atmos. Chem. 16, 99–122 (1993).
    [CrossRef]
  11. S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
    [CrossRef]
  12. S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
    [CrossRef]
  13. J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
    [CrossRef]
  14. K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
    [CrossRef]
  15. J. A. Curry, L. F. Radke, “Possible role of ice crystals in ozone destruction of the lower Arctic atmosphere,” Atmos. Environ. 27, 2873–2879 (1993).
    [CrossRef]
  16. A. Lacis, D. J. Wuebbles, J. A. Logan, “Radiative forcing of climate by changes in the vertical distribution of ozone,” J. Geophys. Res. 95, 9971–9982 (1990).
    [CrossRef]
  17. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  18. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
    [CrossRef]
  19. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976).
    [CrossRef]
  20. W. Steinbrecht, A. I. Carswell, “Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone,” J. Geophys. Res. 100, 1215–1233 (1995).
    [CrossRef]
  21. T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
    [CrossRef]
  22. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
    [CrossRef]
  23. P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV wavelengths: implications for DIAL measurements of tropospheric ozone,” Contrib. Atmos. Phys. 69, 177–187 (1996).
  24. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef] [PubMed]
  25. J. Reichardt, “Optische Fernmessung von Ozon in Zirruswolken,” Ph.D. dissertation, Rep. GKSS 98/E/11 (1998) (Universität Hamburg, Hamburg, Germany, 1997).
  26. J. Reichardt, C. Weitkamp, “Raman-DIAL measurements in the upper troposphere and stratosphere: the effect of high-altitude ice clouds on ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 208–211.
  27. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
    [CrossRef]
  28. M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
    [CrossRef]
  29. M. Griggs, “Absorption coefficients of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
    [CrossRef]
  30. U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
    [CrossRef]
  31. D. H. Ehhalt, F. Rohrer, A. Wahner, “Sources and distribution of NOx in the upper troposphere at northern mid-latitudes,” J. Geophys. Res. 97, 3725–3738 (1992).
    [CrossRef]
  32. V. Bürger, J. Schneider, F. Arnold, “Aircraft-borne mass spectrometer measurements of HNO3, HF, SO2, (CH3)2CO, and CH3CN within STREAM II,” in Polar Stratospheric Ozone, Proceedings of the Third European Workshop on Polar Stratospheric Ozone, (European Commission, Brussels, Belgium, 1996), pp. 209–212.
  33. R. S. Stolarsky, H. L. Wesoky, eds., “The Atmospheric Effects of Stratospheric Aircraft: A Third Program Report,” (NASA Office of Space Science and Applications, Washington, D.C., 1993).
  34. U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
    [CrossRef] [PubMed]
  35. H. Jäger, D. J. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
    [CrossRef] [PubMed]
  36. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  37. J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
    [CrossRef]
  38. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
    [CrossRef]
  39. S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976).
    [CrossRef] [PubMed]
  40. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
    [CrossRef]
  41. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
    [CrossRef]
  42. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  43. M. I. Mishchenko, A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
    [CrossRef]
  44. A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
    [CrossRef]
  45. M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
    [CrossRef]
  46. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
    [CrossRef]
  47. D. Deirmendian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  48. W. A. Bentley, W. J. Humphreys, Snow Crystals (Dover, New York, 1962).
  49. J. D. Cross, “Study of the surface of ice with a scanning electron microscope,” in Physics of Ice, Proceeding of the International Symposium on Physics of Ice, Munich, Germany, 9–14 September 1968 (Plenum, New York, 1968), pp. 81–94.
  50. P. V. Hobbs, Ice Physics (Oxford University, Bristol, 1974).
  51. J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581–588 (1987).
    [CrossRef]
  52. K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
  53. C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
    [CrossRef]
  54. A. J. Heymsfield, “Ice particles in a cirriform cloud at -83 °C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
    [CrossRef]
  55. J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
    [CrossRef]
  56. W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
    [CrossRef]
  57. J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
    [CrossRef]
  58. C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
    [CrossRef]
  59. J. Reichardt, C. Weitkamp, S. Krumbholz, “Rotational vibrational–rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-397 (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 237–241.
  60. J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational–rotational raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
    [CrossRef]

2000 (2)

1998 (5)

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[CrossRef]

K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
[CrossRef]

U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
[CrossRef]

E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

1997 (3)

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
[CrossRef]

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

1996 (5)

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
[CrossRef]

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV wavelengths: implications for DIAL measurements of tropospheric ozone,” Contrib. Atmos. Phys. 69, 177–187 (1996).

1995 (3)

W. Steinbrecht, A. I. Carswell, “Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone,” J. Geophys. Res. 100, 1215–1233 (1995).
[CrossRef]

U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
[CrossRef] [PubMed]

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

1994 (4)

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
[CrossRef]

X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994).
[CrossRef]

1993 (3)

J. E. Jonson, I. S. A. Isaksen, “Tropospheric ozone chemistry: the impact of cloud chemistry,” J. Atmos. Chem. 16, 99–122 (1993).
[CrossRef]

J. A. Curry, L. F. Radke, “Possible role of ice crystals in ozone destruction of the lower Arctic atmosphere,” Atmos. Environ. 27, 2873–2879 (1993).
[CrossRef]

T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

1992 (4)

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

D. H. Ehhalt, F. Rohrer, A. Wahner, “Sources and distribution of NOx in the upper troposphere at northern mid-latitudes,” J. Geophys. Res. 97, 3725–3738 (1992).
[CrossRef]

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

1991 (1)

1990 (3)

H. Jäger, K. Wege, “Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions,” J. Atmos. Chem. 10, 273–287 (1990).
[CrossRef]

J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990).
[CrossRef]

A. Lacis, D. J. Wuebbles, J. A. Logan, “Radiative forcing of climate by changes in the vertical distribution of ozone,” J. Geophys. Res. 95, 9971–9982 (1990).
[CrossRef]

1989 (3)

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[CrossRef]

1987 (2)

J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581–588 (1987).
[CrossRef]

M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987).
[CrossRef] [PubMed]

1986 (5)

S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986).
[CrossRef]

P. J. Crutzen, F. Arnold, “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’,” Nature (London) 324, 651–655 (1986).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

A. J. Heymsfield, “Ice particles in a cirriform cloud at -83 °C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
[CrossRef]

1984 (1)

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

1978 (1)

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

1976 (2)

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976).
[CrossRef] [PubMed]

1968 (1)

M. Griggs, “Absorption coefficients of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
[CrossRef]

Abshire, N. L.

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

Amoruso, A.

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Anderson, T.

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

Ansmann, A.

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
[CrossRef]

U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

Arnold, F.

P. J. Crutzen, F. Arnold, “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’,” Nature (London) 324, 651–655 (1986).
[CrossRef]

V. Bürger, J. Schneider, F. Arnold, “Aircraft-borne mass spectrometer measurements of HNO3, HF, SO2, (CH3)2CO, and CH3CN within STREAM II,” in Polar Stratospheric Ozone, Proceedings of the Third European Workshop on Polar Stratospheric Ozone, (European Commission, Brussels, Belgium, 1996), pp. 209–212.

Arnott, W. P.

W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Avallone, L.

S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
[CrossRef]

Baumgardner, D.

S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
[CrossRef]

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Bentley, W. A.

W. A. Bentley, W. J. Humphreys, Snow Crystals (Dover, New York, 1962).

Bisson, S. E.

Borrmann, S.

S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
[CrossRef]

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

Bösenberg, J.

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV wavelengths: implications for DIAL measurements of tropospheric ozone,” Contrib. Atmos. Phys. 69, 177–187 (1996).

Brasseur, G.

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

Brasseur, G. P.

X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994).
[CrossRef]

Briegleb, B.

X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994).
[CrossRef]

Bürger, V.

V. Bürger, J. Schneider, F. Arnold, “Aircraft-borne mass spectrometer measurements of HNO3, HF, SO2, (CH3)2CO, and CH3CN within STREAM II,” in Polar Stratospheric Ozone, Proceedings of the Third European Workshop on Polar Stratospheric Ozone, (European Commission, Brussels, Belgium, 1996), pp. 209–212.

Cacciani, M.

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Carswell, A. I.

W. Steinbrecht, A. I. Carswell, “Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone,” J. Geophys. Res. 100, 1215–1233 (1995).
[CrossRef]

S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976).
[CrossRef] [PubMed]

Chan, K. R.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Cross, J. D.

J. D. Cross, “Study of the surface of ice with a scanning electron microscope,” in Physics of Ice, Proceeding of the International Symposium on Physics of Ice, Munich, Germany, 9–14 September 1968 (Plenum, New York, 1968), pp. 81–94.

Crutzen, P. J.

J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990).
[CrossRef]

P. J. Crutzen, F. Arnold, “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’,” Nature (London) 324, 651–655 (1986).
[CrossRef]

Curry, J. A.

J. A. Curry, L. F. Radke, “Possible role of ice crystals in ozone destruction of the lower Arctic atmosphere,” Atmos. Environ. 27, 2873–2879 (1993).
[CrossRef]

Deirmendian, D.

D. Deirmendian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Deshler, T.

di Sarra, A.

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Dier, H.-D.

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

Dong, Y. Y.

W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Dye, J. E.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Eberhard, W. L.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Ehhalt, D. H.

D. H. Ehhalt, F. Rohrer, A. Wahner, “Sources and distribution of NOx in the upper troposphere at northern mid-latitudes,” J. Geophys. Res. 97, 3725–3738 (1992).
[CrossRef]

Eloranta, E. W.

E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Ferrare, R.

T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Ferry, G. V.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Fiocco, G.

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

Gandrud, B. W.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Garcia, R. R.

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986).
[CrossRef]

Gary, B. L.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Görsdorf, U.

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

Granier, C.

X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994).
[CrossRef]

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

Griggs, M.

M. Griggs, “Absorption coefficients of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
[CrossRef]

Gross, M.

T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Hagen, D. E.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Hallett, J.

K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
[CrossRef]

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581–588 (1987).
[CrossRef]

Hart, W. D.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[CrossRef]

Heaps, W.

T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Heintzenberg, J.

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

Hess, M.

J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
[CrossRef]

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[CrossRef]

Heymsfield, A. J.

A. J. Heymsfield, “Ice particles in a cirriform cloud at -83 °C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

Hobbs, P. V.

P. V. Hobbs, Ice Physics (Oxford University, Bristol, 1974).

Hofmann, D. J.

H. Jäger, D. J. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
[CrossRef] [PubMed]

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

Humphreys, W. J.

W. A. Bentley, W. J. Humphreys, Snow Crystals (Dover, New York, 1962).

Isaksen, I. S. A.

J. E. Jonson, I. S. A. Isaksen, “Tropospheric ozone chemistry: the impact of cloud chemistry,” J. Atmos. Chem. 16, 99–122 (1993).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Jäger, H.

H. Jäger, D. J. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
[CrossRef] [PubMed]

H. Jäger, K. Wege, “Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions,” J. Atmos. Chem. 10, 273–287 (1990).
[CrossRef]

Jonson, J. E.

J. E. Jonson, I. S. A. Isaksen, “Tropospheric ozone chemistry: the impact of cloud chemistry,” J. Atmos. Chem. 16, 99–122 (1993).
[CrossRef]

Kawa, S. R.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Kelly, K. K.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Koelemeijer, R. B. A.

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[CrossRef]

Krumbholz, S.

J. Reichardt, C. Weitkamp, S. Krumbholz, “Rotational vibrational–rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-397 (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 237–241.

Kunkel, K. E.

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

Lacis, A.

A. Lacis, D. J. Wuebbles, J. A. Logan, “Radiative forcing of climate by changes in the vertical distribution of ozone,” J. Geophys. Res. 95, 9971–9982 (1990).
[CrossRef]

Lelieveld, J.

J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990).
[CrossRef]

Liou, K. N.

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Loewenstein, M.

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

Logan, J. A.

A. Lacis, D. J. Wuebbles, J. A. Logan, “Radiative forcing of climate by changes in the vertical distribution of ozone,” J. Geophys. Res. 95, 9971–9982 (1990).
[CrossRef]

Mace, G. G.

K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
[CrossRef]

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Macke, A.

J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
[CrossRef]

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Mattis, I.

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

McCormick, M. P.

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

McGee, T. J.

T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

McNice, G. T.

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

Melfi, S. H.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Michaelis, W.

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

Mishchenko, M. I.

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

Molina, L. T.

M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987).
[CrossRef] [PubMed]

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Molina, M. J.

M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987).
[CrossRef] [PubMed]

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Mueller, J.

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Neidhart, B.

Pal, S. R.

Platt, C. M. R.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

Poellet, M. R.

Poellot, M. R.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Poelott, M. R.

W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Poole, L. R.

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

Portmann, R.

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

Radke, L. F.

J. A. Curry, L. F. Radke, “Possible role of ice crystals in ozone destruction of the lower Arctic atmosphere,” Atmos. Environ. 27, 2873–2879 (1993).
[CrossRef]

Raschke, E.

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Reichardt, J.

J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
[CrossRef]

J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational–rotational raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
[CrossRef]

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
[CrossRef] [PubMed]

J. Reichardt, “Optische Fernmessung von Ozon in Zirruswolken,” Ph.D. dissertation, Rep. GKSS 98/E/11 (1998) (Universität Hamburg, Hamburg, Germany, 1997).

J. Reichardt, C. Weitkamp, “Raman-DIAL measurements in the upper troposphere and stratosphere: the effect of high-altitude ice clouds on ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 208–211.

J. Reichardt, C. Weitkamp, S. Krumbholz, “Rotational vibrational–rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-397 (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 237–241.

Reichardt, S.

Riebesell, M.

Rohrer, F.

D. H. Ehhalt, F. Rohrer, A. Wahner, “Sources and distribution of NOx in the upper troposphere at northern mid-latitudes,” J. Geophys. Res. 97, 3725–3738 (1992).
[CrossRef]

Rowland, F. S.

S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986).
[CrossRef]

Sassen, K.

K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
[CrossRef]

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Schneider, J.

V. Bürger, J. Schneider, F. Arnold, “Aircraft-borne mass spectrometer measurements of HNO3, HF, SO2, (CH3)2CO, and CH3CN within STREAM II,” in Polar Stratospheric Ozone, Proceedings of the Third European Workshop on Polar Stratospheric Ozone, (European Commission, Brussels, Belgium, 1996), pp. 209–212.

Schröder, F.

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

Schult, I.

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV wavelengths: implications for DIAL measurements of tropospheric ozone,” Contrib. Atmos. Phys. 69, 177–187 (1996).

Schumann, U.

U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
[CrossRef]

Serwazi, M.

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Singh, U.

T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

Solomon, S.

S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
[CrossRef]

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986).
[CrossRef]

Spinhirne, J. D.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[CrossRef]

Stammes, P.

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[CrossRef]

Starr, D. O’C.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

Steinbrecht, W.

W. Steinbrecht, A. I. Carswell, “Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone,” J. Geophys. Res. 100, 1215–1233 (1995).
[CrossRef]

Strauss, B.

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

Ström, J.

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

Takano, Y.

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

Thomason, L.

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

Tie, X. X.

X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994).
[CrossRef]

Toohey, D.

S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
[CrossRef]

Tso, T.-L.

M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Völger, P.

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV wavelengths: implications for DIAL measurements of tropospheric ozone,” Contrib. Atmos. Phys. 69, 177–187 (1996).

Wagner, F.

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

Wahner, A.

D. H. Ehhalt, F. Rohrer, A. Wahner, “Sources and distribution of NOx in the upper troposphere at northern mid-latitudes,” J. Geophys. Res. 97, 3725–3738 (1992).
[CrossRef]

Wandinger, U.

Wang, F. C.-Y.

M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987).
[CrossRef] [PubMed]

Wege, K.

H. Jäger, K. Wege, “Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions,” J. Atmos. Chem. 10, 273–287 (1990).
[CrossRef]

Weinman, J. A.

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

Weitkamp, C.

J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational–rotational raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

J. Reichardt, C. Weitkamp, “Raman-DIAL measurements in the upper troposphere and stratosphere: the effect of high-altitude ice clouds on ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 208–211.

J. Reichardt, C. Weitkamp, S. Krumbholz, “Rotational vibrational–rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-397 (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 237–241.

Wendling, P.

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

Winkler, D.

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

Wuebbles, D. J.

A. Lacis, D. J. Wuebbles, J. A. Logan, “Radiative forcing of climate by changes in the vertical distribution of ozone,” J. Geophys. Res. 95, 9971–9982 (1990).
[CrossRef]

S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986).
[CrossRef]

Ann. Geophys. (1)

U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
[CrossRef]

Appl. Opt. (9)

U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
[CrossRef] [PubMed]

H. Jäger, D. J. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
[CrossRef]

S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976).
[CrossRef] [PubMed]

U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
[CrossRef]

E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000).
[CrossRef]

J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational–rotational raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000).
[CrossRef]

Atmos. Environ. (1)

J. A. Curry, L. F. Radke, “Possible role of ice crystals in ozone destruction of the lower Arctic atmosphere,” Atmos. Environ. 27, 2873–2879 (1993).
[CrossRef]

Atmos. Res. (1)

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

Contrib. Atmos. Phys. (1)

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV wavelengths: implications for DIAL measurements of tropospheric ozone,” Contrib. Atmos. Phys. 69, 177–187 (1996).

Geophys. Res. Lett. (3)

T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993).
[CrossRef]

S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997).
[CrossRef]

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996).
[CrossRef]

J. Appl. Meteorol. (1)

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

J. Atmos. Chem. (2)

H. Jäger, K. Wege, “Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions,” J. Atmos. Chem. 10, 273–287 (1990).
[CrossRef]

J. E. Jonson, I. S. A. Isaksen, “Tropospheric ozone chemistry: the impact of cloud chemistry,” J. Atmos. Chem. 16, 99–122 (1993).
[CrossRef]

J. Atmos. Sci. (6)

A. J. Heymsfield, “Ice particles in a cirriform cloud at -83 °C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986).
[CrossRef]

J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997).
[CrossRef]

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).

J. Chem. Phys. (1)

M. Griggs, “Absorption coefficients of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968).
[CrossRef]

J. Geophys. Res. (13)

D. H. Ehhalt, F. Rohrer, A. Wahner, “Sources and distribution of NOx in the upper troposphere at northern mid-latitudes,” J. Geophys. Res. 97, 3725–3738 (1992).
[CrossRef]

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

W. Steinbrecht, A. I. Carswell, “Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone,” J. Geophys. Res. 100, 1215–1233 (1995).
[CrossRef]

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989).
[CrossRef]

S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997).
[CrossRef]

X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994).
[CrossRef]

A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996).
[CrossRef]

A. Lacis, D. J. Wuebbles, J. A. Logan, “Radiative forcing of climate by changes in the vertical distribution of ozone,” J. Geophys. Res. 95, 9971–9982 (1990).
[CrossRef]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989).
[CrossRef]

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[CrossRef]

Mon. Weather Rev. (1)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Nature (London) (3)

J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990).
[CrossRef]

S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986).
[CrossRef]

P. J. Crutzen, F. Arnold, “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’,” Nature (London) 324, 651–655 (1986).
[CrossRef]

Opt. Eng. (1)

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Science (2)

M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987).
[CrossRef] [PubMed]

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

Other (12)

E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976).
[CrossRef]

J. Reichardt, “Optische Fernmessung von Ozon in Zirruswolken,” Ph.D. dissertation, Rep. GKSS 98/E/11 (1998) (Universität Hamburg, Hamburg, Germany, 1997).

J. Reichardt, C. Weitkamp, “Raman-DIAL measurements in the upper troposphere and stratosphere: the effect of high-altitude ice clouds on ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 208–211.

V. Bürger, J. Schneider, F. Arnold, “Aircraft-borne mass spectrometer measurements of HNO3, HF, SO2, (CH3)2CO, and CH3CN within STREAM II,” in Polar Stratospheric Ozone, Proceedings of the Third European Workshop on Polar Stratospheric Ozone, (European Commission, Brussels, Belgium, 1996), pp. 209–212.

R. S. Stolarsky, H. L. Wesoky, eds., “The Atmospheric Effects of Stratospheric Aircraft: A Third Program Report,” (NASA Office of Space Science and Applications, Washington, D.C., 1993).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

D. Deirmendian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

W. A. Bentley, W. J. Humphreys, Snow Crystals (Dover, New York, 1962).

J. D. Cross, “Study of the surface of ice with a scanning electron microscope,” in Physics of Ice, Proceeding of the International Symposium on Physics of Ice, Munich, Germany, 9–14 September 1968 (Plenum, New York, 1968), pp. 81–94.

P. V. Hobbs, Ice Physics (Oxford University, Bristol, 1974).

J. Reichardt, C. Weitkamp, S. Krumbholz, “Rotational vibrational–rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-397 (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 237–241.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Relations between multiple-scattering parameters F VR(λLon) and F VR(λLoff) and κ satisfying Φ = 0.

Fig. 2
Fig. 2

Ratio of multiply scattered to single-scattering inelastic lidar signal N (ms)/N of atmospheres with aerosol-free (solid curve), clear (continental aerosol, dashed curve), and moderately hazy (marine aerosol, dotted curve) boundary layer and cirrus. The cloud base height and geometric depth are 7 km and 2000 m, respectively; the model layer width is 200 m. The cirrus consists of perfect hexagonal columns with particle diameters between 20 and 200 µm. Size spectra of warm ice clouds are used. The sum of the cloud extinction coefficients at wavelengths λLoff and λVRoff (γparsca) is 0.6 km-1 throughout the cloud. The laser wavelength is 355 nm; the divergence of the laser pulse and RFOV are 0.1 and 0.6 mrad, respectively.

Fig. 3
Fig. 3

Multiple-scattering parameter F VR in cirrus. The effect of the atmosphere is neglected (solid curve) and taken into account (remaining curves). F VR in cirrus with atmosphere are calculated with different values of γparsca. Quality factor Q of the calculations without atmosphere is plotted as error bars. Cloud geometric and particle properties and lidar system parameters are as in Fig. 2.

Fig. 4
Fig. 4

Particle correction function Φ0 [Φ(κ = 0)], molecule correction function Ψ, and extinction-coefficient-weighted sum of Φ0 and Ψ in cirrus. The effect of the atmosphere is neglected (solid curves) and taken into account (remaining curves). Profiles in cirrus with atmosphere are calculated for different γparsca. Cloud geometric and particle properties and lidar system parameters are as in Fig. 2.

Fig. 5
Fig. 5

Particle correction function Φ0 and molecule correction function Ψ in and above the cirrus. In-cloud profiles are identical with those of Fig. 4. Cloud geometric and particle properties and lidar system parameters are as in Fig. 2.

Fig. 6
Fig. 6

Multiple-scattering parameters F VR(λLon) (solid curves) and F VR(λLoff) (dashed curves) and particle correction function Φ0 (curves with symbols) in warm cirrus clouds of different crystal types. The effect of the atmosphere is neglected. Crystal particle size spectrum ranges from 20 to 200 µm maximum dimension. The cloud base height and geometric depth are 7 km and 2000 m; the on- and off-resonance wavelength pairs are 308 and 332 nm and 355 and 387 nm, respectively. The divergence of the laser pulse is 0.1 mrad, and the RFOV is 0.6 mrad.

Fig. 7
Fig. 7

As in Fig. 6 but for cold cirrus clouds.

Fig. 8
Fig. 8

Multiple-scattering parameters F VR(λLon) (solid curves) and F VR(λLoff) (dashed curves) and particle correction function Φ0 (curves with symbols) in cold cirrus of different crystal types (first two columns) and in PSC’s (third column, top). The effect of the atmosphere is neglected. Crystal particle size spectrum maximum dimension ranges from 20 to 80 µm (first column), from 10 to 80 µm (second column), and from 1 to 20 µm (third column, top). The cirrus base height, PSC base height, and the cloud geometric depth are 7 km, 22 km, and 2000 m, respectively. The lidar system parameters are as in Fig. 6.

Fig. 9
Fig. 9

Ozone molecule number density n RD (solid curve, left), temperature (dotted curve, left), particle backscatter coefficient (solid curve, right), and depolarization ratio (dotted curve, right) measured on 9 October 1995 between 2010 and 2210 local time (LT). Signal smoothing lengths for the ozone molecule number density and for both the backscatter coefficient and the depolarization ratio are 1080 and 1920 m below and above 9.6 km, and 120 m, respectively. Error bars indicate the standard deviation that is due to signal noise. The temperature profile was measured at Greifswald (200 km northeast of the lidar site) on 10 October 1995, 0000 LT. The tropopause (dashed curve, left) is derived from the Greifswald profile.

Fig. 10
Fig. 10

Particle correction function Φ, molecule correction function Ψ, extinction-coefficient-weighted sum of Φ and Ψ, and the sum γpar,offsca of the particle extinction coefficients at wavelengths λLoff and λVRoff (all in the top row), particle correction term RDP, multiple-scattering contribution RDM (ms) to the molecule correction term, total multiple-scattering ozone correction RDP + RDM (ms), and multiple-scattering corrected ozone molecule number density n RD (all in the bottom row) for the Raman DIAL measurement on 9 October 1995. The cold cirrus is assumed to consist of perfect hexagonal solid columns with particle sizes between 20 and 200 µm and wavelength-independent particle extinction (κ = 0, solid curves), or imperfect columns with particle sizes between 10 and 80 µm and κ = 0 (dashed curves), or κ = -0.1 (dotted curves). Effective off-resonance particle extinction (thin solid curve, top right; 600-m signal smoothing length), Rayleigh extinction (thin dotted curve, top right; measured with radiosonde), and measured, i.e., uncorrected ozone (thin solid curve, bottom right; profile as in Fig. 9), are given for comparison.

Fig. 11
Fig. 11

Same as Fig. 9 but for the cirrus measurement on 20 November 1995 between 2045 and 2145 LT. Smoothing lengths are 960 and 1440 m below and above 6.4 km and 120 m. Temperature values below 11 km were measured with a local radiosonde launched at the lidar site at 2025 LT. Values above 11 km and tropopause height are taken from a radiosonde profile measured at Schleswig (140 km north of the measurement site) on 21 November 1995, 0000 LT.

Fig. 12
Fig. 12

As in Fig. 10 but for the Raman DIAL measurement on 20 November 1995. The signal smoothing length of the effective off-resonance particle extinction is 480 m.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

NλVR, z=KλL, λVROzz2 βλL, λVR, z×exp-0zαλL, ζ+αλVR, ζdζ
αλ, z=αparscaλ, z+αparabsλ, z+αmolscaλ, z+αO3absλ, z, T+j αgasabs,jλ, z, T,
γmol,onscaz=αmolscaλLon, z+αmolscaλVRon, z.
nz=RDN-RDM-RDG-RDP,
RDN=1ΔCO3absTddzlnNλVRoff, zNλVRon, z,
RDM=1ΔCO3absTγmol,onscaz-γmol,offscaz,
RDG=1ΔCO3absTjγgas,onabs,jz, T-γgas,offabs,jz, T,
RDP=1ΔCO3absTγpar,onscaz-γpar,offscaz+γpar,onabsz-γpar,offabsz.
ΔCO3absT=CO3absλLon, T+CO3absλVRon, T-CO3absλLoff, T-CO3absλVRoff, T.
nRDz=RDN-RDM=nz+RDG+RDP.
γparsca,effz+γmolsca,effz=1-FVRλL, zγparscaz+γmolscaz,
RDP=1ΔCO3absTγpar,onsca,effz-γpar,offsca,effz
=1ΔCO3absT γpar,offsca,effzΦFVRλLon, z, FVRλLoff, z, κ,
ΦFVRλLon, z, FVRλLoff, z, κ=1-FVRλLon, z1-FVRλLoff, zλLon/λLoffκ+λVRon/λLoffκ1+λVRoff/λLoffκ-1.
RDM=1ΔCO3absTγmol,onscaz-γmol,offscaz+1ΔCO3absT γmol,offscazΨFVRλLon, z, FVRλLoff, z,
ΨFVRλLon, z, FVRλLoff, z=-1.856FVRλLon, z-FVRλLoff, z.
1.856=λLon/λLoff-4+λVRon/λLoff-4/1+λVRoff/λLoff-4

Metrics