Abstract

Mass-transport smoothing has been used to fabricate an array of off-axis gallium-phosphide microlenses for use in an optical interconnection system employing a single macroscopic lens to image an array of vertical-cavity surface-emitting lasers (VCSEL’s) onto a detector array. Steering the individual VCSEL beams through the center of the relay lens creates an optical system with low distortion.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
    [CrossRef]
  2. S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
    [CrossRef] [PubMed]
  3. R. L. Morrison, D. B. Buchholz, “Extensible, low-chromatic-sensitivity, all-diffractive-optics relay for interconnecting optoelectronic device arrays,” Appl. Opt. 37, 2925–2934 (1998).
    [CrossRef]
  4. T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems,” Appl. Opt. 37, 194–204 (1998).
    [CrossRef]
  5. Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
    [CrossRef]
  6. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
    [CrossRef]
  7. J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 GaP microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
    [CrossRef]
  8. F. Nikolajeff, T. A. Ballen, J. R. Leger, A. Gopinath, T.-C. Lee, R. C. Williams, “Spatial-mode control of vertical-cavity lasers with micromirrors fabricated and replicated in semiconductor materials,” Appl. Opt. 38, 3030–3038 (1999).
    [CrossRef]
  9. T. A. Ballen, J. R. Leger, “Mass-transport fabrication of off-axis and prismatic gallium phosphide optics,” Appl. Opt. 38, 2979–2985 (1999).
    [CrossRef]
  10. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
    [CrossRef]
  11. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
    [CrossRef]
  12. M. P. Christensen, P. Milojkovic, M. W. Haney, “Low-distortion hybrid optical shuffle concept,” Opt. Lett. 24, 169–171 (1999).
    [CrossRef]
  13. R. Kingslake, Optical System Design (Academic, Orlando, Fla., 1983), p. 21.
  14. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1980), p. 398.
  15. C. R. King, L. Y. Lin, M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349–1351 (1996).
    [CrossRef]

1999 (3)

1998 (3)

1997 (1)

1996 (1)

C. R. King, L. Y. Lin, M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349–1351 (1996).
[CrossRef]

1995 (1)

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 GaP microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

1994 (1)

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

1990 (1)

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

1989 (1)

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

1988 (1)

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Abraham, M. H.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 GaP microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Ballen, T. A.

Bertilsson, K.

Born, M.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1980), p. 398.

Buchholz, D. B.

Christensen, M. P.

Coldren, L. A.

Dennis, C. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Diadiuk, V.

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Fields, R. A.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 GaP microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Gopinath, A.

Haney, M. W.

Jahns, J.

King, C. R.

C. R. King, L. Y. Lin, M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349–1351 (1996).
[CrossRef]

Kingslake, R.

R. Kingslake, Optical System Design (Academic, Orlando, Fla., 1983), p. 21.

Kurokawa, T.

Lee, T.-C.

Leger, J. R.

Liau, Z. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Lin, L. Y.

C. R. King, L. Y. Lin, M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349–1351 (1996).
[CrossRef]

Louderback, D. A.

Matso, S.

Milojkovic, P.

Morrison, R. L.

Mull, D. E.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Nakahara, T.

Nikolajeff, F.

Ohiso, Y.

Sinzinger, S.

Strzelecka, E. M.

Swenson, J. S.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 GaP microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Tateno, K.

Thibeault, B. J.

Thompson, G. B.

Tsuda, H.

Waarts, R. G.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Wakatsuki, A.

Walpole, J. N.

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Williams, R. C.

Williamson, R. C.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1980), p. 398.

Wu, M. C.

C. R. King, L. Y. Lin, M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349–1351 (1996).
[CrossRef]

Zeiger, H. J.

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (4)

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 GaP microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. King, L. Y. Lin, M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349–1351 (1996).
[CrossRef]

J. Appl. Phys. (1)

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Opt. Lett. (1)

Other (2)

R. Kingslake, Optical System Design (Academic, Orlando, Fla., 1983), p. 21.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1980), p. 398.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical interconnect system exhibiting distortion. The dotted lines show the chief ray from each VCSEL. One set of marginal rays is also shown.

Fig. 2
Fig. 2

Diagram of an optical interconnect system using off-axis GaP microlenses for distortion elimination. The dotted lines show the chief ray from each VCSEL. One set of marginal rays is also shown.

Fig. 3
Fig. 3

code v system diagram showing three object field points. Beams emit perpendicular to the VCSEL substrate.

Fig. 4
Fig. 4

Distortion as a function of the fractional object height (the 1.0 object height corresponds to 2.828 mm) for the system shown in Fig. 3.

Fig. 5
Fig. 5

code v system diagram showing three object field points. Beams are steered through the center of the imaging system.

Fig. 6
Fig. 6

OPD calculation for steered beams (three object field points).

Fig. 7
Fig. 7

Image of clear aperture array through the imaging system. The simulation of distortion is shown in the system in Fig. 1.

Fig. 8
Fig. 8

Image of VCSEL array incorporating beam-steering microlenses. Distortion is eliminated.

Metrics