Abstract

We propose a method for recording a multilevel signal onto optical read-only-memory discs. In this method we use signal processing to generate a multilevel recording signal that satisfies the zero-intersymbol interference condition and the zero-dc condition. The resultant multilevel signal is emboss recorded as the position displacement of groove walls. To play back a disc, push–pull detection and an adaptive equalizer are used. We also introduce feedback to reduce the nonlinear characteristics existing in the recording and playback systems. An experimental disc with 0.6-µm track pitch and 0.28-µm/bit density is made. When a digital versatile disc equivalent optical pickup is used to play back this disc, we confirm that a two-dimensional eye pattern of 16 levels is clearly observed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
    [CrossRef]
  2. M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
    [CrossRef]
  3. S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The application of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
    [CrossRef]
  4. B. Lathi, Modern Digital and Analog Communication Systems (Holt, Rinehart & Winston, Philadelphia, 1989), Chap. 3.8.
  5. S. Kobayashi, T. Horigome, “An advanced signal processing technique designed for multilevel signal optical disc system,” Opt. Rev. 4, No. 3, 376–384 (1997).
  6. J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
    [CrossRef]
  7. S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
    [CrossRef]
  8. W. T. Webb, L. Hanzo, Modern Quadrature Amplitude Modulation (Pentech, Graham Lodge, London, 1994), Chap. 4.
  9. S. Kobayashi, T. Horigome, H. Yamatsu, S. Masuhara, K. Saito, “GBR (groove baseband recording) for an optical disc ROM,” in Technical Digest of Optical Data Storage 2000 (Institute of Electrical and Electronic Engineers, New York, 2000), pp. 14–17.
  10. G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.
  11. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).
  12. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10, pp. 662–689.

1999 (3)

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The application of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

1997 (1)

S. Kobayashi, T. Horigome, “An advanced signal processing technique designed for multilevel signal optical disc system,” Opt. Rev. 4, No. 3, 376–384 (1997).

1996 (1)

J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
[CrossRef]

1982 (1)

M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).

Aarts, J.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

Aki, Y.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Baartman, J.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

Bouwhuis, G.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.

Braat, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.

de Kock, J. P.

J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
[CrossRef]

Furuki, M.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Hanzo, L.

W. T. Webb, L. Hanzo, Modern Quadrature Amplitude Modulation (Pentech, Graham Lodge, London, 1994), Chap. 4.

Hendriks, B. H. W.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

Horigome, T.

S. Kobayashi, T. Horigome, “An advanced signal processing technique designed for multilevel signal optical disc system,” Opt. Rev. 4, No. 3, 376–384 (1997).

S. Kobayashi, T. Horigome, H. Yamatsu, S. Masuhara, K. Saito, “GBR (groove baseband recording) for an optical disc ROM,” in Technical Digest of Optical Data Storage 2000 (Institute of Electrical and Electronic Engineers, New York, 2000), pp. 14–17.

Houten, H.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

Huijser, A.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.

Immink, K.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.

Ina, H.

M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).

Ishimoto, T.

J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
[CrossRef]

Iwasaki, M.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The application of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

Johnson, B. V.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Kashiwagi, T.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Kobayashi, S.

S. Kobayashi, T. Horigome, “An advanced signal processing technique designed for multilevel signal optical disc system,” Opt. Rev. 4, No. 3, 376–384 (1997).

J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
[CrossRef]

M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).

S. Kobayashi, T. Horigome, H. Yamatsu, S. Masuhara, K. Saito, “GBR (groove baseband recording) for an optical disc ROM,” in Technical Digest of Optical Data Storage 2000 (Institute of Electrical and Electronic Engineers, New York, 2000), pp. 14–17.

Kondo, K.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Kubota, S.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Lathi, B.

B. Lathi, Modern Digital and Analog Communication Systems (Holt, Rinehart & Winston, Philadelphia, 1989), Chap. 3.8.

Martynov, Y. V.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

Masuhara, S.

S. Kobayashi, T. Horigome, H. Yamatsu, S. Masuhara, K. Saito, “GBR (groove baseband recording) for an optical disc ROM,” in Technical Digest of Optical Data Storage 2000 (Institute of Electrical and Electronic Engineers, New York, 2000), pp. 14–17.

McDermott, G. A.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Murao, N.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The application of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

O’Neill, M. P.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Ogasawara, M.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The application of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

Ohtaki, S.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The application of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

Oka, M.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Ooki, H.

J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10, pp. 662–689.

Pasman, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.

Pietrzyk, C.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Rosmalen, G.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

Saito, K.

S. Kobayashi, T. Horigome, H. Yamatsu, S. Masuhara, K. Saito, “GBR (groove baseband recording) for an optical disc ROM,” in Technical Digest of Optical Data Storage 2000 (Institute of Electrical and Electronic Engineers, New York, 2000), pp. 14–17.

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10, pp. 662–689.

Schleipen, J. J. H. B.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

Shafaat, T.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Spielman, S.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Suzuki, A.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

Takeda, M.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).

van Rosmalen, G.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.

Warland, D. K.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Webb, W. T.

W. T. Webb, L. Hanzo, Modern Quadrature Amplitude Modulation (Pentech, Graham Lodge, London, 1994), Chap. 4.

Wong, T. L.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

Yamatsu, H.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
[CrossRef]

S. Kobayashi, T. Horigome, H. Yamatsu, S. Masuhara, K. Saito, “GBR (groove baseband recording) for an optical disc ROM,” in Technical Digest of Optical Data Storage 2000 (Institute of Electrical and Electronic Engineers, New York, 2000), pp. 14–17.

Zijp, F.

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1982).

Jpn. J. Appl. Phys. (4)

Y. V. Martynov, B. H. W. Hendriks, F. Zijp, J. Aarts, J. Baartman, G. Rosmalen, J. J. H. B. Schleipen, H. Houten, “High numerical aperture optical recording: active tilt correction or thin cover layer,” Jpn. J. Appl. Phys. 38, 1786–1792 (1999).
[CrossRef]

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, S. Kubota, “Deep UV mastering using an all-solid-state 266-nm laser for an over 20-Gbyte/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999).
[CrossRef]

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The application of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

J. P. de Kock, S. Kobayashi, T. Ishimoto, H. Yamatsu, H. Ooki, “Sampled servo read-only memory system using single carrier independent pit edge recording,” Jpn. J. Appl. Phys. 35, 437–442 (1996).
[CrossRef]

Opt. Rev. (1)

S. Kobayashi, T. Horigome, “An advanced signal processing technique designed for multilevel signal optical disc system,” Opt. Rev. 4, No. 3, 376–384 (1997).

Other (6)

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10, pp. 662–689.

S. Spielman, B. V. Johnson, G. A. McDermott, M. P. O’Neill, C. Pietrzyk, T. Shafaat, D. K. Warland, T. L. Wong, “Using pit-depth modulation to increase capacity and data transfer rate in optical discs,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 98–100 (1997).
[CrossRef]

W. T. Webb, L. Hanzo, Modern Quadrature Amplitude Modulation (Pentech, Graham Lodge, London, 1994), Chap. 4.

S. Kobayashi, T. Horigome, H. Yamatsu, S. Masuhara, K. Saito, “GBR (groove baseband recording) for an optical disc ROM,” in Technical Digest of Optical Data Storage 2000 (Institute of Electrical and Electronic Engineers, New York, 2000), pp. 14–17.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. Immink, Principles of Optical Disc Systems (Adam Hilger, Bristol, Mass., 1985), Chap. 2.2.3.

B. Lathi, Modern Digital and Analog Communication Systems (Holt, Rinehart & Winston, Philadelphia, 1989), Chap. 3.8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Block diagram of our signal processing used before mastering.

Fig. 2
Fig. 2

Explanation of QAM modulated signal generation: (A) impulses of four-level signals, (B) raised-cosine filter characteristics, (C) Fourier-transformed raised-cosine filter characteristics, (D) band-limited four-level signals, (E) resultant QAM waveform, (F) spectrum of QAM waveform with a superimposed pilot carrier.

Fig. 3
Fig. 3

Our mastering machine designed for recording analog waveforms as wobbling of groove walls. The laser light is divided into two beams. Two acousto-optic deflectors (AOD1 and AOD2) deflect these two beams according to the two input signals r(t) and s(t).

Fig. 4
Fig. 4

Relationship between the two laser spots and resultant displacements of groove walls. We define the track pitch to be the average distance between the groove walls.

Fig. 5
Fig. 5

SEM picture of a stamper of a GBR disc. We can observe that the signal (analog waveform) is represented as a wobbling of groove walls. The track pitch of this disc is 0.6 µm.

Fig. 6
Fig. 6

Relationship between groove walls and the three beam spots. The TPP signal is calculated as (A + B) - (D + C). The track error signal is calculated as (E + F) - (G + H).

Fig. 7
Fig. 7

SEM picture when a single carrier of 1.75 MHz is recorded as a wobbling of a groove wall. The opposite side of the wall is kept to a constant position (no modulation).

Fig. 8
Fig. 8

Signal spectrum when conventional CA detection is used to detect the groove wobbling of the single-carrier (1.75-MHz) disc shown in Fig. 7. For CA detection the second harmonic (3.5 MHz) exhibits almost the same signal amplitude as that of the recorded signal.

Fig. 9
Fig. 9

In our simulation the position of groove walls within a readout spot is represented by two parameters, inclination and bias.

Fig. 10
Fig. 10

Simulated TPP signal curves showing that the value detected as TPP depends mostly on the inclination of the groove wall.

Fig. 11
Fig. 11

Signal spectrum when TPP is used to play back the single-carrier disc shown in Fig. 7. We confirm that a single carrier of 1.75 MHz is detected without distortion. We also confirm that a CNR of ∼50 dB is obtained at 30 kHz of resolution bandwidth.

Fig. 12
Fig. 12

Encoder output signal r(t) showing a flat spectrum between 300 kHz and 3.1 MHz. From this spectrum we also confirm that the output is dc free and the maximum frequency is limited to ∼3.5 MHz. A pilot carrier of 3.6-MHz frequency is also superimposed.

Fig. 13
Fig. 13

Experimental signal repeatedly recorded eight times for one rotation. This results in the sector configuration shown.

Fig. 14
Fig. 14

Top curve, playback signal spectrum when TPP detection is used; bottom curve, disc with dc grooves. Comparing these two curves, we estimate that the signal-to-noise ratio of this media is ∼20 dB.

Fig. 15
Fig. 15

Block diagram of our playback system. After a playback signal is sampled by a digital oscilloscope (sampling rate, 25 MHz), the resultant process is performed by software.

Fig. 16
Fig. 16

Equalizer characteristics that compensate the characteristics of TPP and integration.

Fig. 17
Fig. 17

Playback TPP signal spectrum after an adaptive equalizer is applied. The equalizer almost retrieved the recorded signal spectrum shown in Fig. 12.

Fig. 18
Fig. 18

Two-dimensional eye pattern obtained when no feedback is performed. The eye pattern is blurred owing to systematic error.

Fig. 19
Fig. 19

Spectrum of the feedback signal, calculated as the difference between the actual playback signal and the theoretically expected signal.

Fig. 20
Fig. 20

Two-dimensional eye pattern obtained from the feedback performed disc. The detected signal points are clearly separated into 16 combinations.

Fig. 21
Fig. 21

Feedback signal spectrum for the second feedback. A comparison with the curve in Fig. 19 shows that the systematic error is decreased by approximately 6–10 dB below that for the first feedback.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

fxt=A n δt-nT2b1n+b0n+B,
fyt=A n δt-nT2b3n+b2n+B,
pt=gt * fxt,
qt=gt * fyt,
Gf=T;0f12T1-αTcos2π4α2fT-1+α;12T1-αf12T1+α,
gnT=1, n=00, n0.
rt=ptsin2πf0t+qtcos2πf0t+C cos2πfct,
f01+α2T.
f0-1+α2Tff0+1+α2T.
track error=E-F-G-H.
TPP=A+B-C+D.
rxrx0+rx0xx-x0.
cos2πfct+φkt=12expj2πfct+φkt+12exp-j2πfct-φkt,
vkt=rt+ξt+ζkt.
vkt12q˙texp-j2πf0t+jp˙texp-j2πf0t+q˙texpj2πf0t-jp˙texpj2πf0t,
wkt12jq˙texp-j2πf0t-p˙texp-j2πf0t-jq˙texpj2πf0t-p˙texpj2πf0t.
p˙t=vktcosj2πf0t+wktsinj2πf0t.
q˙t=-vktsinj2πf0t+wktcosj2πf0t.
ξt18k=18 vkt-rt.
rtrt-βξt,

Metrics