Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Statistical performance of cascaded linear shift-invariant processing

Not Accessible

Your library or personal account may give you access

Abstract

The cascaded correlator architecture comprises a series of traditional linear correlators separated by nonlinear threshold functions, trained with neural-network techniques. We investigate the shift-invariant classification performance of cascaded correlators in comparison with optimum Bayes classifiers. Inputs are formulated as randomly generated sample members of known statistical class distributions. It is shown that when the separability of true and false classes is varied in both the first and the second orders, the two-stage cascaded correlator shows performance similar to that of the optimum quadratic Bayes classifier throughout the studied range. It is shown that this is due to the similar decision boundaries implemented by the two nonlinear classifiers.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Cascaded linear shift-invariant processors in optical pattern recognition

Stuart Reed and Jeremy Coupland
Appl. Opt. 40(23) 3843-3849 (2001)

Rotationally invariant pattern recognition by use of linear and nonlinear cascaded filters

Ning Wu, Robin D. Alcock, Neil A. Halliwell, and Jeremy M. Coupland
Appl. Opt. 44(20) 4315-4322 (2005)

Two class minimax distance transform correlation filter

Marios Savvides, B. V. K. Vijaya Kumar, and Pradeep K. Khosla
Appl. Opt. 41(32) 6829-6840 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.