Abstract

The cascaded correlator architecture comprises a series of traditional linear correlators separated by nonlinear threshold functions, trained with neural-network techniques. We investigate the shift-invariant classification performance of cascaded correlators in comparison with optimum Bayes classifiers. Inputs are formulated as randomly generated sample members of known statistical class distributions. It is shown that when the separability of true and false classes is varied in both the first and the second orders, the two-stage cascaded correlator shows performance similar to that of the optimum quadratic Bayes classifier throughout the studied range. It is shown that this is due to the similar decision boundaries implemented by the two nonlinear classifiers.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded linear shift-invariant processors in optical pattern recognition

Stuart Reed and Jeremy Coupland
Appl. Opt. 40(23) 3843-3849 (2001)

Rotationally invariant pattern recognition by use of linear and nonlinear cascaded filters

Ning Wu, Robin D. Alcock, Neil A. Halliwell, and Jeremy M. Coupland
Appl. Opt. 44(20) 4315-4322 (2005)

Two class minimax distance transform correlation filter

Marios Savvides, B. V. K. Vijaya Kumar, and Pradeep K. Khosla
Appl. Opt. 41(32) 6829-6840 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription