Abstract

Photoacoustic signal generation can be used for a new medical tomographic technique. This makes it possible to image optically different structures, such as the (micro)vascular system in tissues, by use of a transducer array for the detection of laser-generated wide-bandwidth ultrasound. A time-domain delay-and-sum focused beam-forming technique is used to locate the photoacoustic sources in the sample. To characterize the transducer response, simulations have been performed for a wide variety of parameter values and have been verified experimentally. With these data the weight factors for the spectrally and temporally filtered sensor signals are determined in order to optimize the signal-to-noise ratio of the beam former. The imaging algorithm is investigated by simulations and experiments. With this algorithm, for what is to our knowledge the first time, the three-dimensional photoacoustic imaging of complex optically absorbing structures located in a highly diffuse medium is demonstrated. When 200-µm-diameter hydrophone elements are used, the depth resolution is better than 20 µm, and the lateral resolution is better than 200 µm, independent of the depth for our range of imaging (to ∼6 mm). Reduction of the transducer diameters and adaptation of the weight factors, at the cost of some increase of the noise level, will further improve the lateral resolution. The synthetic aperture algorithm used has been shown to be suitable for the new technique of photoacoustic tissue scanning.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  2. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
    [CrossRef]
  3. R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
    [CrossRef]
  4. G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
    [CrossRef]
  5. G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
    [CrossRef]
  6. J. A. Evans, “Pulse-echo ultrasound,” in Practical Ultrasound, R. Lerski, ed., (IRL, Oxford, UK, 1988), pp. 15–29.
  7. M. Kirschner, G. Paltauf, H. Schmidt-Kloiber, “Determination of optical properties by measuring laser induced acoustic transients,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Verga Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 228–237 (1996).
    [CrossRef]
  8. S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996).
    [CrossRef]
  9. A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved optoacoustic measurement of absorption of light by inhomogeneous media,” Appl. Opt. 34, 1484–1487 (1995).
    [CrossRef] [PubMed]
  10. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
    [CrossRef] [PubMed]
  11. A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).
  12. R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).
  13. R. A. Kruger, P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
    [CrossRef] [PubMed]
  14. R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
    [CrossRef] [PubMed]
  15. D. A. Hutchins, A. C. Tam, “Pulsed photoacoustic materials characterisation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 429–449 (1986).
    [CrossRef]
  16. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [CrossRef]
  17. R. A. Mucci, “A comparison of efficient beamforming algorithms,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 548–558 (1984).
    [CrossRef]
  18. D. E. Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
    [CrossRef]
  19. D. H. Johnson, D. E. Dudgeon, “Beamforming,” in Array Signal Processing: Concepts and Techniques (PTR Prentice-Hall, Englewood Cliffs, N.J., 1993), Chap. 4, pp. 111–190.
  20. C. G. A. Hoelen, F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
    [CrossRef]
  21. J. A. Evans, “Physics—the nature of ultrasound,” in Practical Ultrasound, R. Lerski, ed. (IRL, Oxford, England, 1988), pp. 1–13.
  22. M. W. Sigrist, F. K. Kneubühl, “Laser generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
    [CrossRef]
  23. G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).
  24. M. I. Khan, G. J. Diebold, “The photoacoustic effect generated by an isotropic solid sphere,” Ultrasonics 33, 265–269 (1995).
    [CrossRef]
  25. C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997).
    [CrossRef]
  26. V. M. Ristic, Principles of Acoustic Devices (Wiley, New York, 1983).
  27. C. G. A. Hoelen, R. Pongers, A. Dekker, F. F M de Mul, “3D-photoacoustic imaging of blood vessels,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 386–390.

2000 (1)

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

1999 (3)

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

1998 (2)

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

1997 (1)

1995 (3)

M. I. Khan, G. J. Diebold, “The photoacoustic effect generated by an isotropic solid sphere,” Ultrasonics 33, 265–269 (1995).
[CrossRef]

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved optoacoustic measurement of absorption of light by inhomogeneous media,” Appl. Opt. 34, 1484–1487 (1995).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

1994 (2)

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[CrossRef] [PubMed]

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

1986 (2)

D. A. Hutchins, A. C. Tam, “Pulsed photoacoustic materials characterisation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 429–449 (1986).
[CrossRef]

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

1984 (1)

R. A. Mucci, “A comparison of efficient beamforming algorithms,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 548–558 (1984).
[CrossRef]

1978 (1)

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

1977 (1)

D. E. Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
[CrossRef]

Appledorn, C. R.

R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

de Mul, F. F M

C. G. A. Hoelen, R. Pongers, A. Dekker, F. F M de Mul, “3D-photoacoustic imaging of blood vessels,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 386–390.

de Mul, F. F. M.

C. G. A. Hoelen, F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997).
[CrossRef]

Dekker, A.

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

C. G. A. Hoelen, R. Pongers, A. Dekker, F. F M de Mul, “3D-photoacoustic imaging of blood vessels,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 386–390.

Diebold, G. J.

M. I. Khan, G. J. Diebold, “The photoacoustic effect generated by an isotropic solid sphere,” Ultrasonics 33, 265–269 (1995).
[CrossRef]

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Dudgeon, D. E.

D. E. Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
[CrossRef]

D. H. Johnson, D. E. Dudgeon, “Beamforming,” in Array Signal Processing: Concepts and Techniques (PTR Prentice-Hall, Englewood Cliffs, N.J., 1993), Chap. 4, pp. 111–190.

Ertmer, W.

S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996).
[CrossRef]

Esenaliev, R.

A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

Evans, J. A.

J. A. Evans, “Pulse-echo ultrasound,” in Practical Ultrasound, R. Lerski, ed., (IRL, Oxford, UK, 1988), pp. 15–29.

J. A. Evans, “Physics—the nature of ultrasound,” in Practical Ultrasound, R. Lerski, ed. (IRL, Oxford, England, 1988), pp. 1–13.

Fang, Y. R.

R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

Fornage, B. D.

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

Frenz, M.

G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

Greve, J.

C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997).
[CrossRef]

Hamhuis, G.

C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997).
[CrossRef]

Hoelen, C. G. A.

C. G. A. Hoelen, F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

C. G. A. Hoelen, R. Pongers, A. Dekker, F. F M de Mul, “3D-photoacoustic imaging of blood vessels,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 386–390.

C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997).
[CrossRef]

Hutchins, D. A.

D. A. Hutchins, A. C. Tam, “Pulsed photoacoustic materials characterisation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 429–449 (1986).
[CrossRef]

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).

Johnson, D. H.

D. H. Johnson, D. E. Dudgeon, “Beamforming,” in Array Signal Processing: Concepts and Techniques (PTR Prentice-Hall, Englewood Cliffs, N.J., 1993), Chap. 4, pp. 111–190.

Karabutov, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved optoacoustic measurement of absorption of light by inhomogeneous media,” Appl. Opt. 34, 1484–1487 (1995).
[CrossRef] [PubMed]

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

Khan, M. I.

M. I. Khan, G. J. Diebold, “The photoacoustic effect generated by an isotropic solid sphere,” Ultrasonics 33, 265–269 (1995).
[CrossRef]

Kirschner, M.

M. Kirschner, G. Paltauf, H. Schmidt-Kloiber, “Determination of optical properties by measuring laser induced acoustic transients,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Verga Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 228–237 (1996).
[CrossRef]

Kneubühl, F. K.

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

Kostli, K. P.

G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

Kruger, R. A.

R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[CrossRef] [PubMed]

Letokhov, V. S.

Liu, P.

R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[CrossRef] [PubMed]

Lohmann, S.

S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996).
[CrossRef]

Lubatchowski, H.

S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996).
[CrossRef]

Mucci, R. A.

R. A. Mucci, “A comparison of efficient beamforming algorithms,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 548–558 (1984).
[CrossRef]

Oraevsky, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).

Paltauf, G.

G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

M. Kirschner, G. Paltauf, H. Schmidt-Kloiber, “Determination of optical properties by measuring laser induced acoustic transients,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Verga Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 228–237 (1996).
[CrossRef]

Podymova, N. B.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved optoacoustic measurement of absorption of light by inhomogeneous media,” Appl. Opt. 34, 1484–1487 (1995).
[CrossRef] [PubMed]

Pongers, R.

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997).
[CrossRef]

C. G. A. Hoelen, R. Pongers, A. Dekker, F. F M de Mul, “3D-photoacoustic imaging of blood vessels,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 386–390.

Ristic, V. M.

V. M. Ristic, Principles of Acoustic Devices (Wiley, New York, 1983).

Ruff, C.

S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996).
[CrossRef]

Savateeva, E. V.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

Schmidt-Kloiber, H.

G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

M. Kirschner, G. Paltauf, H. Schmidt-Kloiber, “Determination of optical properties by measuring laser induced acoustic transients,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Verga Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 228–237 (1996).
[CrossRef]

Schmitz, C.

S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

Stelling, C.

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

Sun, T.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Tam, A. C.

D. A. Hutchins, A. C. Tam, “Pulsed photoacoustic materials characterisation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 429–449 (1986).
[CrossRef]

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Thomsen, S.

A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).

Thomsen, S. L.

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).

Acoustica (1)

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

R. A. Mucci, “A comparison of efficient beamforming algorithms,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 548–558 (1984).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

D. A. Hutchins, A. C. Tam, “Pulsed photoacoustic materials characterisation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 429–449 (1986).
[CrossRef]

J. Acoust. Soc. Am. (3)

C. G. A. Hoelen, F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999).
[CrossRef]

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

J. Appl. Phys. (1)

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

Med. Phys. (2)

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[CrossRef] [PubMed]

R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

D. E. Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
[CrossRef]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Ultrasonics (1)

M. I. Khan, G. J. Diebold, “The photoacoustic effect generated by an isotropic solid sphere,” Ultrasonics 33, 265–269 (1995).
[CrossRef]

Other (10)

C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997).
[CrossRef]

V. M. Ristic, Principles of Acoustic Devices (Wiley, New York, 1983).

C. G. A. Hoelen, R. Pongers, A. Dekker, F. F M de Mul, “3D-photoacoustic imaging of blood vessels,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 386–390.

J. A. Evans, “Physics—the nature of ultrasound,” in Practical Ultrasound, R. Lerski, ed. (IRL, Oxford, England, 1988), pp. 1–13.

D. H. Johnson, D. E. Dudgeon, “Beamforming,” in Array Signal Processing: Concepts and Techniques (PTR Prentice-Hall, Englewood Cliffs, N.J., 1993), Chap. 4, pp. 111–190.

A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).

J. A. Evans, “Pulse-echo ultrasound,” in Practical Ultrasound, R. Lerski, ed., (IRL, Oxford, UK, 1988), pp. 15–29.

M. Kirschner, G. Paltauf, H. Schmidt-Kloiber, “Determination of optical properties by measuring laser induced acoustic transients,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Verga Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 228–237 (1996).
[CrossRef]

S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of the PA imaging program, based on the time-domain beam-forming (BF) principle. Input are the transducer signals, simulated directivity data, and a number of parameters that control the SNR, the image-plane selection, and the voxel size (resolution).

Fig. 2
Fig. 2

Simulated adjusted directivities of a PVdF transducer for various detector diameters D with D/ L pp = 0.1, 2, 5, 10, 15, 20, 25, where L pp is the peak-to-peak distance of the bipolar acoustic transient (=20 µm). The directivities have been adapted to take into account the deviations from the depth response of a point transducer. Upper panel, near-field detection; lower panel, far-field detection.

Fig. 3
Fig. 3

Simulated normalized shift of the position of the maximum of the detector signal for a spherical acoustic pulse, relative to the time of flight to the center of a PVdF transducer, as a function of the detector translation normalized with the depth. The parameter is the transducer diameter D (L pp = 20 µm, z = 500 µm, D = 2–500 µm; see Fig. 2).

Fig. 4
Fig. 4

Effective aperture of three PVdF needle hydrophones with different diameters at a relatively small detection depth for an experimental bipolar PA signal (L pp = 27 µm), represented as the normalized signal maximum as a function of the normalized translation (see Fig. 3). The transducer output has been normalized with the value at normal incidence. The curves are the corresponding Gaussian approximations based on the simulations.

Fig. 5
Fig. 5

Experimental normalized output of several hydrophones multiplied with the depth of the PA source as a function of the depth normalized with the peak-to-peak distance (see Fig. 2). The curves are the corresponding theoretical predictions.

Fig. 6
Fig. 6

Experimental HWHM values of the directivity, as shown in Fig. 4, of three PVdF hydrophones at three different normalized depths as functions of the transducer diameter normalized with the peak-to-peak distance (see Fig. 2). The curves represent the theoretical numerical approximations.

Fig. 7
Fig. 7

Upper panel, focused beam-forming-based reconstruction of four simulated spherical PA sources emitting a bipolar pulse with a peak-to-peak distance L pp of 20 µm. Source locations (x, y, z) are (0; 0; 0.5), (0.5; 0; 0.5), (-0.5; 0; 1), and (0; 0; 1.5) (mm). As input, the simulated response of a 200-µm-diameter PVdF sensor at 21 × 21 locations (100-µm spacing) was used. The beam-former signal decrease is used for the source strength reconstruction based on signal processing with 20-µm resolution (voxel diameter). Lower panel, the reconstruction of an experimental PA source. The PA signal was generated by irradiation of a thin absorbing strand, placed in a water basin, over a length of 70 µm and detected at 11 × 11 points with 100-µm spacing. Voxel diameter is 20 µm.

Fig. 8
Fig. 8

Schematic drawing of the configuration (upper panel) and the experimental reconstruction (lower panel) of the absorbing characters forming the words TOP and UT. The reconstruction is based on focused beam forming with a 50% isosurface threshold. The z axis, corresponding to depth, is relatively stretched. The characters were constructed from 10-µm-thick absorbing filaments and were positioned in an optically strongly scattering medium (10% Intralipid-10%). The sample was irradiated with an 8-ns laser pulse. The PA signals were detected at z = 0 mm at 33 × 17 points with a spacing of 100 µm. A voxel diameter of 20 µm was used.

Fig. 9
Fig. 9

Reconstruction of artificial blood vessels in a tissue phantom. The sample consists of a 10% Intralipid-10% dilution with two nylon capillaries (inner diameter, 0.2 mm; outer diameter, 0.4 mm) located at depths Z = 1.55 and Z = 1.95 mm. A flowing Evans Blue solution with μ a = 300 cm-1 acts as the blood phantom. The tissue phantom was irradiated with an 80-µJ laser pulse (8 ns, 532 nm) from a 0.6-mm-diameter glass fiber located at Z = 3.5 mm and pointing toward the plane of detection. The PA response was detected in the Z = 0 plane at 25 × 25 points with 150-µm spacing. Voxel size is 20 µm.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Sft=i wifSit+δifi wif,
Sit=η arτ diτP0t-rv-τdτ=η ar dit*P0t-rv,
Sft=ji wifηajrij dijt*P0jt-rij-rifvi wif.
dˆiz, x=Siz, xSiz, 0fzf0z=diz, xfzf0z,
wif=cdif,
S=ηA  TAθPA=ηd0*P0,
S=j ηd0j*P0j=j Sj.
Sft=j ηajfzi difdijP0jt-rij-rifvi dif.
S*t=S*t, D*, z*, x*,
N=iwiNi21/2i wi=ηPNiwi21/2i wi,
Si,max=ηa0P0,maxfzdi,
SN=a0fzP0,maxPNi widii wi21/2.
SNl=a0fzP0,maxPN1Δx×-xx wxdxx-xx w2xx1/2.
SNp=a0fzP0,maxPN1Δx×0x wxdx2πxx0x w2x2πxx1/2.
 wxdxx2> w2xx  d2xx.
wif=cdif,
SN=a0P0,maxPN fzi di21/2.
SNs=a0P0,maxPN fz,
SNl=a0fzP0,maxPNx0zΔx1/2Glxˆ, Glxˆ=-xˆxˆ d2xˆxˆ1/21.33.
SNP=a0fzP0,maxPNx0zΔx Gpxˆ, Gpxˆ=0xˆ d2xˆ2πxˆxˆ1/21.77.
GA=S/NarrayS/Nsensor=i widi/i wi21/2.
GA,l=x0zΔx1/2Glxˆ1.33x0zΔx1/2, GA,p=x0zΔx Gpxˆ1.77 x0zΔx.

Metrics