T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, “Radiative heat transfer in soot-containing combustion systems with aggregation,” Int. J. Heat Mass Transfer 41, 2581–2587 (1998).

[CrossRef]

S. Manickavasagam, M. P. Mengüç, “Scattering matrix elements of fractal-like soot agglomerates,” Appl. Opt. 36, 1337–1351 (1997).

[CrossRef]
[PubMed]

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).

[CrossRef]

S. di Stasio, P. Massoli, “Morphology, monomer size and concentration of agglomerates constituted by Rayleigh particles as retrieved from scattering/extinction measurements,” Combust. Sci. Technol. 124, 219–247 (1997).

[CrossRef]

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).

[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, “Optical properties of soot in buoyant laminar diffusion flames,” J. Heat Transfer 116, 971–979 (1994).

[CrossRef]

B. M. Vaglieco, O. Monda, F. E. Corcione, M. P. Mengüç, “Optical and radiative properties of particulates at diesel engine exhaust,” Combust. Sci. Technol. 102, 283–299 (1994).

[CrossRef]

T. T. Charalampopoulos, P. K. Panigrahi, “Depolarization characteristics of agglomerated particles–reciprocity relations,” J. Phys. D 26, 2075–2081 (1993).

[CrossRef]

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).

[CrossRef]

J. C. Ku, K. H. Shim, “A comparison of solution for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).

[CrossRef]

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke agglomerates,” Langmuir 4, 1321–1326 (1988).

[CrossRef]

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulate,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).

[CrossRef]

A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London Ser. A 366, 111–127 (1979).

[CrossRef]

D. S. Saxon, “Tensor scattering matrix for the electromagnetic field,” Phys. Rev. 100, 1771–1775 (1955).

[CrossRef]

R. S. Krishnan, “The reciprocity theorem in colloid optics and its generalization,” Proc. Indian Acad. Sci. Sect. A 11, 21–35 (1938).

R. S. Krishnan, “Reciprocity theorem in colloid optics,” Proc. Indian Acad. Sci. Sect. A 7, 91–97 (1938).

L. P. Bayvel, A. R. Jones, Electromagnetic Scattering and its Application (Applied Science, London, 1981).

[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, “Radiative heat transfer in soot-containing combustion systems with aggregation,” Int. J. Heat Mass Transfer 41, 2581–2587 (1998).

[CrossRef]

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]
[PubMed]

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).

[CrossRef]

T. T. Charalampopoulos, P. K. Panigrahi, “Depolarization characteristics of agglomerated particles–reciprocity relations,” J. Phys. D 26, 2075–2081 (1993).

[CrossRef]

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).

[CrossRef]

G. Shu, T. T. Charalampopoulos, “Unified inversion scheme for the morphological parameters and optical properties of aggregated aerosols using light scattering,” Appl. Opt. (to be published).

B. M. Vaglieco, O. Monda, F. E. Corcione, M. P. Mengüç, “Optical and radiative properties of particulates at diesel engine exhaust,” Combust. Sci. Technol. 102, 283–299 (1994).

[CrossRef]

A. D’Alessio, “Laser light scattering and fluorescence diagnostics in rich flames,” in Particulate Carbon, Formation during Combustion, D. C. Siegla, G. W. Smith, eds. (Plenum, New York, 1981).

S. di Stasio, P. Massoli, “Morphology, monomer size and concentration of agglomerates constituted by Rayleigh particles as retrieved from scattering/extinction measurements,” Combust. Sci. Technol. 124, 219–247 (1997).

[CrossRef]

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulate,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).

[CrossRef]

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).

[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, “Optical properties of soot in buoyant laminar diffusion flames,” J. Heat Transfer 116, 971–979 (1994).

[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, “Radiative heat transfer in soot-containing combustion systems with aggregation,” Int. J. Heat Mass Transfer 41, 2581–2587 (1998).

[CrossRef]

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]
[PubMed]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, Cambridge, 1989).

H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1980).

A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London Ser. A 366, 111–127 (1979).

[CrossRef]

L. P. Bayvel, A. R. Jones, Electromagnetic Scattering and its Application (Applied Science, London, 1981).

[CrossRef]

D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, “Radiative heat transfer in soot-containing combustion systems with aggregation,” Int. J. Heat Mass Transfer 41, 2581–2587 (1998).

[CrossRef]

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]
[PubMed]

Ü. Ö. Köylü, G. M. Faeth, “Optical properties of soot in buoyant laminar diffusion flames,” J. Heat Transfer 116, 971–979 (1994).

[CrossRef]

R. S. Krishnan, “Reciprocity theorem in colloid optics,” Proc. Indian Acad. Sci. Sect. A 7, 91–97 (1938).

R. S. Krishnan, “The reciprocity theorem in colloid optics and its generalization,” Proc. Indian Acad. Sci. Sect. A 11, 21–35 (1938).

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).

[CrossRef]

J. C. Ku, K. H. Shim, “A comparison of solution for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).

[CrossRef]

S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).

[CrossRef]

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).

[CrossRef]

S. di Stasio, P. Massoli, “Morphology, monomer size and concentration of agglomerates constituted by Rayleigh particles as retrieved from scattering/extinction measurements,” Combust. Sci. Technol. 124, 219–247 (1997).

[CrossRef]

S. Manickavasagam, M. P. Mengüç, “Scattering matrix elements of fractal-like soot agglomerates,” Appl. Opt. 36, 1337–1351 (1997).

[CrossRef]
[PubMed]

B. M. Vaglieco, O. Monda, F. E. Corcione, M. P. Mengüç, “Optical and radiative properties of particulates at diesel engine exhaust,” Combust. Sci. Technol. 102, 283–299 (1994).

[CrossRef]

B. M. Vaglieco, O. Monda, F. E. Corcione, M. P. Mengüç, “Optical and radiative properties of particulates at diesel engine exhaust,” Combust. Sci. Technol. 102, 283–299 (1994).

[CrossRef]

D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

[CrossRef]

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke agglomerates,” Langmuir 4, 1321–1326 (1988).

[CrossRef]

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke agglomerates,” Langmuir 4, 1321–1326 (1988).

[CrossRef]

T. T. Charalampopoulos, P. K. Panigrahi, “Depolarization characteristics of agglomerated particles–reciprocity relations,” J. Phys. D 26, 2075–2081 (1993).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, Cambridge, 1989).

D. S. Saxon, “Tensor scattering matrix for the electromagnetic field,” Phys. Rev. 100, 1771–1775 (1955).

[CrossRef]

J. C. Ku, K. H. Shim, “A comparison of solution for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).

[CrossRef]

G. Shu, T. T. Charalampopoulos, “Unified inversion scheme for the morphological parameters and optical properties of aggregated aerosols using light scattering,” Appl. Opt. (to be published).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, Cambridge, 1989).

S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).

[CrossRef]

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulate,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).

[CrossRef]

B. M. Vaglieco, O. Monda, F. E. Corcione, M. P. Mengüç, “Optical and radiative properties of particulates at diesel engine exhaust,” Combust. Sci. Technol. 102, 283–299 (1994).

[CrossRef]

D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, Cambridge, 1989).

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).

[CrossRef]

M. F. Iskander, H. Y. Chen, J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).

[CrossRef]
[PubMed]

D. W. Mackowski, “Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles,” Appl. Opt. 34, 3535–3545 (1995).

[CrossRef]
[PubMed]

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]
[PubMed]

S. Manickavasagam, M. P. Mengüç, “Scattering matrix elements of fractal-like soot agglomerates,” Appl. Opt. 36, 1337–1351 (1997).

[CrossRef]
[PubMed]

B. M. Vaglieco, O. Monda, F. E. Corcione, M. P. Mengüç, “Optical and radiative properties of particulates at diesel engine exhaust,” Combust. Sci. Technol. 102, 283–299 (1994).

[CrossRef]

S. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989).

[CrossRef]

S. di Stasio, P. Massoli, “Morphology, monomer size and concentration of agglomerates constituted by Rayleigh particles as retrieved from scattering/extinction measurements,” Combust. Sci. Technol. 124, 219–247 (1997).

[CrossRef]

T. L. Farias, M. G. Carvalho, Ü. Ö. Köylü, “Radiative heat transfer in soot-containing combustion systems with aggregation,” Int. J. Heat Mass Transfer 41, 2581–2587 (1998).

[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, “Optical properties of soot in buoyant laminar diffusion flames,” J. Heat Transfer 116, 971–979 (1994).

[CrossRef]

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).

[CrossRef]

T. T. Charalampopoulos, P. K. Panigrahi, “Depolarization characteristics of agglomerated particles–reciprocity relations,” J. Phys. D 26, 2075–2081 (1993).

[CrossRef]

W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1994).

[CrossRef]

J. C. Ku, K. H. Shim, “A comparison of solution for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).

[CrossRef]

B. L. Drolen, C. L. Tien, “Absorption and scattering of agglomerated soot particulate,” J. Quant. Spectrosc. Radiat. Transfer 37, 433–448 (1987).

[CrossRef]

R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke agglomerates,” Langmuir 4, 1321–1326 (1988).

[CrossRef]

D. S. Saxon, “Tensor scattering matrix for the electromagnetic field,” Phys. Rev. 100, 1771–1775 (1955).

[CrossRef]

R. S. Krishnan, “The reciprocity theorem in colloid optics and its generalization,” Proc. Indian Acad. Sci. Sect. A 11, 21–35 (1938).

R. S. Krishnan, “Reciprocity theorem in colloid optics,” Proc. Indian Acad. Sci. Sect. A 7, 91–97 (1938).

A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London Ser. A 366, 111–127 (1979).

[CrossRef]

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).

[CrossRef]

H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1980).

D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University, Cambridge, 1989).

L. P. Bayvel, A. R. Jones, Electromagnetic Scattering and its Application (Applied Science, London, 1981).

[CrossRef]

A. D’Alessio, “Laser light scattering and fluorescence diagnostics in rich flames,” in Particulate Carbon, Formation during Combustion, D. C. Siegla, G. W. Smith, eds. (Plenum, New York, 1981).

G. Shu, T. T. Charalampopoulos, “Unified inversion scheme for the morphological parameters and optical properties of aggregated aerosols using light scattering,” Appl. Opt. (to be published).