Abstract

We have directly measured the retardance versus temperature for single-crystal quartz (SiO2) and magnesium fluoride (MgF2) at wavelengths of 633, 788, 1318, and 1539 nm and over a temperature range of 24–80 °C. To our knowledge, the temperature dependence of retardance for these two materials has not been directly measured. We compared our direct measurements of the normalized temperature derivative of the retardance γ with derived values from previously reported indirect measurements and found our results to be in agreement and our measurement uncertainties to be typically a factor of 4 smaller. Our overall mean value for γSiO2 is -1.23 × 10-4 with a combined standard uncertainty of 0.02 × 10-4 and little wavelength dependence over the 633–1539-nm range. Our overall mean value for γMgF2 is -5.37 × 10-5 with a combined standard uncertainty of 0.17 × 10-5 and with a small wavelength dependence over the 633–1539-nm range.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16, L97–L100 (1983).
    [CrossRef]
  2. W. L. Wolfe, “Properties of optical materials,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), Chap. 7, pp. 7-82–7-134.
  3. A. Feldman, D. Horowitz, R. M. Waxler, M. J. Dodge, “Optical materials characterization,” (U.S. GPO, Washington D.C., 1979).
  4. P. A. Williams, A. H. Rose, C. M. Wang, “Rotating-polarizer polarimeter for accurate retardance measurement,” Appl. Opt. 36, 6466–6472 (1997).
    [CrossRef]
  5. P. D. Hale, G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27, 5146–5153 (1988).
    [CrossRef] [PubMed]
  6. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984).
    [CrossRef] [PubMed]
  7. F. J. Micheli, “Ueber den einfluss der temperatur auf die dispersion ultravioletter straheln in flusspat, steinsalz, quarz and kalkspat,” Ann. Phys. (Leipzig) 31, 772–789 (1902).
    [CrossRef]
  8. P. A. Williams, “Mode-coupled artifact standard for polarization-mode dispersion: design, assembly, and implementation,” Appl. Opt. 38, 6498–6507 (1999).
    [CrossRef]
  9. P. A. Williams, Optoelectronics Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80305 (personal communication, 2000).

1999 (1)

1997 (1)

1988 (1)

1984 (1)

1983 (1)

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16, L97–L100 (1983).
[CrossRef]

1902 (1)

F. J. Micheli, “Ueber den einfluss der temperatur auf die dispersion ultravioletter straheln in flusspat, steinsalz, quarz and kalkspat,” Ann. Phys. (Leipzig) 31, 772–789 (1902).
[CrossRef]

Day, G. W.

Dodge, M. J.

M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984).
[CrossRef] [PubMed]

A. Feldman, D. Horowitz, R. M. Waxler, M. J. Dodge, “Optical materials characterization,” (U.S. GPO, Washington D.C., 1979).

Feldman, A.

A. Feldman, D. Horowitz, R. M. Waxler, M. J. Dodge, “Optical materials characterization,” (U.S. GPO, Washington D.C., 1979).

Hale, P. D.

Horowitz, D.

A. Feldman, D. Horowitz, R. M. Waxler, M. J. Dodge, “Optical materials characterization,” (U.S. GPO, Washington D.C., 1979).

Micheli, F. J.

F. J. Micheli, “Ueber den einfluss der temperatur auf die dispersion ultravioletter straheln in flusspat, steinsalz, quarz and kalkspat,” Ann. Phys. (Leipzig) 31, 772–789 (1902).
[CrossRef]

Rose, A. H.

Toyoda, T.

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16, L97–L100 (1983).
[CrossRef]

Wang, C. M.

Waxler, R. M.

A. Feldman, D. Horowitz, R. M. Waxler, M. J. Dodge, “Optical materials characterization,” (U.S. GPO, Washington D.C., 1979).

Williams, P. A.

Wolfe, W. L.

W. L. Wolfe, “Properties of optical materials,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), Chap. 7, pp. 7-82–7-134.

Yabe, M.

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16, L97–L100 (1983).
[CrossRef]

Ann. Phys. (Leipzig) (1)

F. J. Micheli, “Ueber den einfluss der temperatur auf die dispersion ultravioletter straheln in flusspat, steinsalz, quarz and kalkspat,” Ann. Phys. (Leipzig) 31, 772–789 (1902).
[CrossRef]

Appl. Opt. (4)

J. Phys. D (1)

T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16, L97–L100 (1983).
[CrossRef]

Other (3)

W. L. Wolfe, “Properties of optical materials,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), Chap. 7, pp. 7-82–7-134.

A. Feldman, D. Horowitz, R. M. Waxler, M. J. Dodge, “Optical materials characterization,” (U.S. GPO, Washington D.C., 1979).

P. A. Williams, Optoelectronics Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80305 (personal communication, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Automated polarimeter arrangement for the measurement of the temperature dependence of the retardance. DVM, digital voltmeter.

Fig. 2
Fig. 2

MgF2 wave-plate response R(T) during heating and cooling cycle at 789.83 nm: +, data values; solid curve, least-squares fit to Eq. (7).

Fig. 3
Fig. 3

Temperature dependence of the retardance for MgF2 from the National Institute of Standards and Technology (NIST) and Feldman et al.3 Error bars are 2σ. Curves represent spline fits.

Fig. 4
Fig. 4

Temperature dependence of the retardance for SiO2 from the National Institute of Standards and Technology (NIST) and others.2,7 Error bars are 2σ. Curves represent spline fits.

Tables (2)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ=2πλ Bh,
dδdT=2πλB dhdT+h dBdT,
γ=1δdδdT=1BdBdT+1hdhdT,
γ=1BdnedT-dn0dT+α,
RT=A cos2δT2,
RT=A sin2δT2,
RT=A0+A1 cos2π h0 B0γ1+γT-T0,
RT=A  cos2π h0 B0λ1+γT-T0Swλdλ,

Metrics