Abstract

The transient absorption produced in high-purity fused silica by exposure to a 193-nm excimer laser is investigated as a function of exposure, dissolved molecular hydrogen content, and hydrogen-related processing. Long-term recovery of transmittance was found to correlate with the dissolved molecular hydrogen concentration, whereas short-term fade was due to geminate recombination of an E′ center with an H radical. The redarkening process was shown to be the result of photolysis of SiH, which regenerates color centers. When the silica was processed in a hydrogen atmosphere at high temperature and subsequently exposed at 193 nm, the glass was found to produce an absorption spike, a fast, recoverable decrease in transmittance. The origin of the spike was linked to the creation of a precursor produced in the thermal reaction of silica with hydrogen. The precursor can be identified by its signal in the Raman spectrum. It is suggested that the precursor has absorption at 193 nm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Frieble, D. L. Griscom, “Radiation effects in glass,” in Treatise on Material Science and Technology, M. Tomozawa, R. H. Doremus, eds. (Academic, New York, 1979), pp. 257–357.
  2. E. J. Frieble, “Radiation effects,” in Optical Properties of Glass, D. R. Uhlmann, J. J. Kreidl, eds. (American Ceramic Society, Cincinnati, Ohio, 1991), pp. 205–214.
  3. S. Faile, D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5, 385–390 (1970).
    [CrossRef]
  4. M. Rothschild, D. J. Ehrlich, D. C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
    [CrossRef]
  5. T. E. Tsai, D. L. Griscom, E. J. Frieble, “Mechanism of intrinsic Si E′ center photogeneration in high purity silica,” Phys. Rev. Lett. 61, 444–446 (1988).
    [CrossRef] [PubMed]
  6. N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized in reducing conditions,” Phys. Rev. B 45, 9265–9270 (1991).
    [CrossRef]
  7. N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized under oxidizing conditions,” Phys. Rev. B 45, 2050–2055 (1992).
    [CrossRef]
  8. L. Skuja, K. Tanimura, N. Itoh, “Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glass SiO2,” J. Appl. Phys. 80, 3518–3525 (1996).
    [CrossRef]
  9. R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, “ESR and photoluminescence centers induced by gamma rays in silica,” Nucl. Instrum. Methods Phys. Res. B 116, 373–377 (1996).
    [CrossRef]
  10. N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
    [CrossRef] [PubMed]
  11. N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
    [CrossRef]
  12. R. J. Araujo, N. F. Borrelli, C. Smith, “Induced absorption in silica (a preliminary model),” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 2–9 (1998).
  13. V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” Zh. Prikl. Spektrosk. 46, 987–991 (1987).
  14. H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
    [CrossRef]
  15. C. Hartwig, “The radiation induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66, 227–238 (1997).
    [CrossRef]

1997 (1)

C. Hartwig, “The radiation induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66, 227–238 (1997).
[CrossRef]

1996 (2)

L. Skuja, K. Tanimura, N. Itoh, “Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glass SiO2,” J. Appl. Phys. 80, 3518–3525 (1996).
[CrossRef]

R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, “ESR and photoluminescence centers induced by gamma rays in silica,” Nucl. Instrum. Methods Phys. Res. B 116, 373–377 (1996).
[CrossRef]

1992 (2)

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized under oxidizing conditions,” Phys. Rev. B 45, 2050–2055 (1992).
[CrossRef]

1991 (3)

H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
[CrossRef]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
[CrossRef] [PubMed]

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized in reducing conditions,” Phys. Rev. B 45, 9265–9270 (1991).
[CrossRef]

1989 (1)

M. Rothschild, D. J. Ehrlich, D. C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

1988 (1)

T. E. Tsai, D. L. Griscom, E. J. Frieble, “Mechanism of intrinsic Si E′ center photogeneration in high purity silica,” Phys. Rev. Lett. 61, 444–446 (1988).
[CrossRef] [PubMed]

1987 (1)

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” Zh. Prikl. Spektrosk. 46, 987–991 (1987).

1970 (1)

S. Faile, D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5, 385–390 (1970).
[CrossRef]

Abe, Y.

H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
[CrossRef]

Arai, K.

H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
[CrossRef]

Araujo, R. J.

R. J. Araujo, N. F. Borrelli, C. Smith, “Induced absorption in silica (a preliminary model),” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 2–9 (1998).

Borrelli, N. F.

R. J. Araujo, N. F. Borrelli, C. Smith, “Induced absorption in silica (a preliminary model),” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 2–9 (1998).

Boscaino, R.

R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, “ESR and photoluminescence centers induced by gamma rays in silica,” Nucl. Instrum. Methods Phys. Res. B 116, 373–377 (1996).
[CrossRef]

Cannas, M.

R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, “ESR and photoluminescence centers induced by gamma rays in silica,” Nucl. Instrum. Methods Phys. Res. B 116, 373–377 (1996).
[CrossRef]

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, D. C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Englisch, W.

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
[CrossRef] [PubMed]

Fabian, H.

Faile, S.

S. Faile, D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5, 385–390 (1970).
[CrossRef]

Frieble, E. J.

T. E. Tsai, D. L. Griscom, E. J. Frieble, “Mechanism of intrinsic Si E′ center photogeneration in high purity silica,” Phys. Rev. Lett. 61, 444–446 (1988).
[CrossRef] [PubMed]

E. J. Frieble, D. L. Griscom, “Radiation effects in glass,” in Treatise on Material Science and Technology, M. Tomozawa, R. H. Doremus, eds. (Academic, New York, 1979), pp. 257–357.

E. J. Frieble, “Radiation effects,” in Optical Properties of Glass, D. R. Uhlmann, J. J. Kreidl, eds. (American Ceramic Society, Cincinnati, Ohio, 1991), pp. 205–214.

Gelardi, F. M.

R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, “ESR and photoluminescence centers induced by gamma rays in silica,” Nucl. Instrum. Methods Phys. Res. B 116, 373–377 (1996).
[CrossRef]

Greulich, K.

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
[CrossRef] [PubMed]

Griscom, D. L.

T. E. Tsai, D. L. Griscom, E. J. Frieble, “Mechanism of intrinsic Si E′ center photogeneration in high purity silica,” Phys. Rev. Lett. 61, 444–446 (1988).
[CrossRef] [PubMed]

E. J. Frieble, D. L. Griscom, “Radiation effects in glass,” in Treatise on Material Science and Technology, M. Tomozawa, R. H. Doremus, eds. (Academic, New York, 1979), pp. 257–357.

Hartwig, C.

C. Hartwig, “The radiation induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66, 227–238 (1997).
[CrossRef]

Hitzler, H.

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
[CrossRef] [PubMed]

Hosono, H.

H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
[CrossRef]

Imagawa, H.

H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
[CrossRef]

Imai, H.

H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
[CrossRef]

Itoh, N.

L. Skuja, K. Tanimura, N. Itoh, “Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glass SiO2,” J. Appl. Phys. 80, 3518–3525 (1996).
[CrossRef]

Khotimchenko, V. S.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” Zh. Prikl. Spektrosk. 46, 987–991 (1987).

Komatsu, Y.

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized under oxidizing conditions,” Phys. Rev. B 45, 2050–2055 (1992).
[CrossRef]

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized in reducing conditions,” Phys. Rev. B 45, 9265–9270 (1991).
[CrossRef]

Kuksenko, K. N.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” Zh. Prikl. Spektrosk. 46, 987–991 (1987).

Kuzuu, N.

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized under oxidizing conditions,” Phys. Rev. B 45, 2050–2055 (1992).
[CrossRef]

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized in reducing conditions,” Phys. Rev. B 45, 9265–9270 (1991).
[CrossRef]

Leclerc, N.

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
[CrossRef] [PubMed]

Leone, M.

R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, “ESR and photoluminescence centers induced by gamma rays in silica,” Nucl. Instrum. Methods Phys. Res. B 116, 373–377 (1996).
[CrossRef]

Murahara, M.

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized under oxidizing conditions,” Phys. Rev. B 45, 2050–2055 (1992).
[CrossRef]

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized in reducing conditions,” Phys. Rev. B 45, 9265–9270 (1991).
[CrossRef]

Novak, I. I.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” Zh. Prikl. Spektrosk. 46, 987–991 (1987).

Pfleiderer, C.

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
[CrossRef] [PubMed]

Rothschild, M.

M. Rothschild, D. J. Ehrlich, D. C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Roy, D. M.

S. Faile, D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5, 385–390 (1970).
[CrossRef]

Shaver, D. C.

M. Rothschild, D. J. Ehrlich, D. C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Skuja, L.

L. Skuja, K. Tanimura, N. Itoh, “Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glass SiO2,” J. Appl. Phys. 80, 3518–3525 (1996).
[CrossRef]

Smith, C.

R. J. Araujo, N. F. Borrelli, C. Smith, “Induced absorption in silica (a preliminary model),” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 2–9 (1998).

Sochivkin, G. M.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” Zh. Prikl. Spektrosk. 46, 987–991 (1987).

Takke, R.

Tanimura, K.

L. Skuja, K. Tanimura, N. Itoh, “Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glass SiO2,” J. Appl. Phys. 80, 3518–3525 (1996).
[CrossRef]

Thomas, S.

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wofrum, K. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16, 940–942 (1991).
[CrossRef] [PubMed]

Tsai, T. E.

T. E. Tsai, D. L. Griscom, E. J. Frieble, “Mechanism of intrinsic Si E′ center photogeneration in high purity silica,” Phys. Rev. Lett. 61, 444–446 (1988).
[CrossRef] [PubMed]

Wofrum, J.

Wolfrum, J.

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

M. Rothschild, D. J. Ehrlich, D. C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

J. Appl. Phys. (1)

L. Skuja, K. Tanimura, N. Itoh, “Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glass SiO2,” J. Appl. Phys. 80, 3518–3525 (1996).
[CrossRef]

J. Chem. Phys. (1)

C. Hartwig, “The radiation induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66, 227–238 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. Greulich, S. Thomas, W. Englisch, “Luminescence and transient absorption bands in fused SiO2 induced by KrF laser radiation at various temperatures,” J. Non-Cryst. Solids 149, 115–122 (1992).
[CrossRef]

Mater. Res. Bull. (1)

S. Faile, D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5, 385–390 (1970).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, “ESR and photoluminescence centers induced by gamma rays in silica,” Nucl. Instrum. Methods Phys. Res. B 116, 373–377 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

H. Imai, K. Arai, H. Hosono, Y. Abe, H. Imagawa “Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses,” Phys. Rev. B 44, 4812–4821 (1991).
[CrossRef]

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized in reducing conditions,” Phys. Rev. B 45, 9265–9270 (1991).
[CrossRef]

N. Kuzuu, Y. Komatsu, M. Murahara, “ArF-excimer-laser-induced emission and absorption bands in fused silica synthesized under oxidizing conditions,” Phys. Rev. B 45, 2050–2055 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

T. E. Tsai, D. L. Griscom, E. J. Frieble, “Mechanism of intrinsic Si E′ center photogeneration in high purity silica,” Phys. Rev. Lett. 61, 444–446 (1988).
[CrossRef] [PubMed]

Zh. Prikl. Spektrosk. (1)

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” Zh. Prikl. Spektrosk. 46, 987–991 (1987).

Other (3)

R. J. Araujo, N. F. Borrelli, C. Smith, “Induced absorption in silica (a preliminary model),” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 2–9 (1998).

E. J. Frieble, D. L. Griscom, “Radiation effects in glass,” in Treatise on Material Science and Technology, M. Tomozawa, R. H. Doremus, eds. (Academic, New York, 1979), pp. 257–357.

E. J. Frieble, “Radiation effects,” in Optical Properties of Glass, D. R. Uhlmann, J. J. Kreidl, eds. (American Ceramic Society, Cincinnati, Ohio, 1991), pp. 205–214.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Normalized absorbance versus wavelength for the Gaussian bands of the E′ (215-nm) and NBOHC (260-nm) absorptions. FWHM’s for the E′ center and the NBOHC are 0.8 and 1.05 eV, respectively.8,9

Fig. 2
Fig. 2

Experimental arrangement showing the measurement of the induced absorption on line. The probe beam was a collimated D2 beam (215 nm) passing through the sample at right angles to the exposure beam. PMT, photomultiplier tube.

Fig. 3
Fig. 3

(a) Measured fading of the 193-nm excimer laser-induced absorption at 215 nm for samples with different molecular hydrogen content: curve A, H2 concentration 3 × 1017 molecules/cm3, curve B, sample heated to 1000 °C for 16 h to remove molecular H2, curve C, sample impregnated with molecular H2, 2 × 1019 molecules/cm3. (b) Normalized fade curves for the above glasses.

Fig. 4
Fig. 4

Response of glass containing H2 > 1018 molecules/cm3 (dashed curve) and 3 × 1017 (solid curve) during 300-, 100-, and 50-ms shutter times.

Fig. 5
Fig. 5

Representative fade and redarkening curve illustrating the return of the absorption to the previous level. Darkening and redarkening fluences are the same.

Fig. 6
Fig. 6

(a) Redarkening curves at 215 nm. Sample was initially exposed to 25-mJ/cm2 193-nm excimer radiation for a given time. Laser irradiation was interrupted for given period of time and then reexposed at 6 mJ/cm2. Glass was allowed to fade and then redarkened at 3 mJ/cm2, then faded and redarkened at 25 mJ/cm2. (b) Redarkening curves at 215 nm of the 25-mJ/cm2 and 6-mJ/cm2 exposures. Data from (a) are replotted with absorbance at time zero equal to zero.

Fig. 7
Fig. 7

Initial induced absorption at 215-nm as a function of prior thermal treatment in hydrogen. Curve A shows the initial darkening behavior of glass containing 3 × 1017 molecules H2/cm3; curve B is a sample initially impregnated with molecular hydrogen to a concentration of 1019/cm3 and then heated at 1000 °C for 5 min. Curve C is the H2-treated glass with no subsequent heat treatment.

Fig. 8
Fig. 8

Raman spectra showing a band at 2260 cm-1 that appears as a consequence of the thermal cycle. Also shown is the 193-nm induced absorption spike height.

Fig. 9
Fig. 9

Raman spectra of a H2-loaded, heat-treated glass that was subsequently exposed. The band at 2280 cm-1 appears after exposure.

Fig. 10
Fig. 10

Change in absorbance at 193 nm of a glass containing 3 × 1017 molecules H2/cm3 SiO2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

O3Si· + 1/2H2  SiH.
O3Si· + ·H  SiH.
SiH hν  O3Si· + ·H.
SiESiH=KIk,
SiOSi + H2 + heat  SiH* + SiOH*,
SiH* + hν  E+H,
E + H SiH.

Metrics