Abstract

Light coupling into a sub-micrometer-thick waveguide is usually done through a grating coupler. Coupling efficiency is strongly enhanced by addition of a mirror above the grating. This new kind of coupler can be designed to achieve efficiencies as great as 80%. Numerical calculations for a high-angular-spread Gaussian incident beam are compared with experimental results obtained for a standard silicon-on-insulator waveguide.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 5, pp. 123–157.
    [CrossRef]
  2. D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide using a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
    [CrossRef] [PubMed]
  3. O. Parriaux, V. Sychugov, A. Tischenco, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996).
    [CrossRef]
  4. R. Soref, “Applications of silicon based optoelectronics,” MRS Bull. 23, 20–24 (1998).
  5. E. A. Fitzgerald, L. C. Kimerling, “Silicon based microphotonics and integrated optoelectronics,” MRS Bull. 23, 39–47 (1998).
  6. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
    [CrossRef]
  7. A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).
  8. A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
    [CrossRef]
  9. D. Pascal, R. Orobtchouk, S. Laval, A. Koster, “Simple technique for fabricating limited coupler gratings by holographic method using standard thick photoresist,” Electron. Lett. 31, 914–915 (1995).
    [CrossRef]
  10. L. Li, M. C. Gupta, “Effect of beam focusing on the efficiency of planar waveguide grating couplers,” Appl. Opt. 29, 5320–5325 (1990).
    [CrossRef] [PubMed]
  11. R. Orobtchouk, “Modélisation et étude de composants pour l’optique intégrée silicium sur isolant (Simox) à 1,3 µm,” Ph.D. dissertation 4106 (Université Paris-Sud, Orsay, France, 1996).
  12. Em. E. Kriezis, P. K. Pandelakis, A. G. Papagiannakis, “Diffraction of a Gaussian beam from a periodic planar screen,” J. Opt. Soc. Am. A 11, 630–636 (1994).
    [CrossRef]
  13. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 101–122.
    [CrossRef]
  14. K. C. Chang, V. Shah, T. Tamir, “Scattering and guiding of waves by dielectric gratings with arbitrary profiles,” J. Opt. Soc. Am. 70, 804–813 (1980).
    [CrossRef]
  15. T. D. Visser, H. Blok, D. Lenstra, “Modal analysis of a planar waveguide with gain and losses,” IEEE J. Quantum Electron. 31, 1803–1810 (1995).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

1998

R. Soref, “Applications of silicon based optoelectronics,” MRS Bull. 23, 20–24 (1998).

E. A. Fitzgerald, L. C. Kimerling, “Silicon based microphotonics and integrated optoelectronics,” MRS Bull. 23, 39–47 (1998).

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[CrossRef]

1997

1996

O. Parriaux, V. Sychugov, A. Tischenco, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996).
[CrossRef]

1995

D. Pascal, R. Orobtchouk, S. Laval, A. Koster, “Simple technique for fabricating limited coupler gratings by holographic method using standard thick photoresist,” Electron. Lett. 31, 914–915 (1995).
[CrossRef]

T. D. Visser, H. Blok, D. Lenstra, “Modal analysis of a planar waveguide with gain and losses,” IEEE J. Quantum Electron. 31, 1803–1810 (1995).
[CrossRef]

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

1994

1990

1980

Aspar, B.

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

Auberton-Hervé, A. J.

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

Barge, T.

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

Blok, H.

T. D. Visser, H. Blok, D. Lenstra, “Modal analysis of a planar waveguide with gain and losses,” IEEE J. Quantum Electron. 31, 1803–1810 (1995).
[CrossRef]

Bruel, M.

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

Chang, K. C.

Coppinger, F.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

Fitzgerald, E. A.

E. A. Fitzgerald, L. C. Kimerling, “Silicon based microphotonics and integrated optoelectronics,” MRS Bull. 23, 39–47 (1998).

Gupta, M. C.

Jalali, B.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

Kimerling, L. C.

E. A. Fitzgerald, L. C. Kimerling, “Silicon based microphotonics and integrated optoelectronics,” MRS Bull. 23, 39–47 (1998).

Koster, A.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[CrossRef]

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide using a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
[CrossRef] [PubMed]

D. Pascal, R. Orobtchouk, S. Laval, A. Koster, “Simple technique for fabricating limited coupler gratings by holographic method using standard thick photoresist,” Electron. Lett. 31, 914–915 (1995).
[CrossRef]

Kriezis, Em. E.

Lamure, J. M.

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

Laval, S.

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide using a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
[CrossRef] [PubMed]

D. Pascal, R. Orobtchouk, S. Laval, A. Koster, “Simple technique for fabricating limited coupler gratings by holographic method using standard thick photoresist,” Electron. Lett. 31, 914–915 (1995).
[CrossRef]

Layadi, A.

Lenstra, D.

T. D. Visser, H. Blok, D. Lenstra, “Modal analysis of a planar waveguide with gain and losses,” IEEE J. Quantum Electron. 31, 1803–1810 (1995).
[CrossRef]

Li, L.

Nevière, M.

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 5, pp. 123–157.
[CrossRef]

Orobtchouk, R.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[CrossRef]

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide using a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
[CrossRef] [PubMed]

D. Pascal, R. Orobtchouk, S. Laval, A. Koster, “Simple technique for fabricating limited coupler gratings by holographic method using standard thick photoresist,” Electron. Lett. 31, 914–915 (1995).
[CrossRef]

R. Orobtchouk, “Modélisation et étude de composants pour l’optique intégrée silicium sur isolant (Simox) à 1,3 µm,” Ph.D. dissertation 4106 (Université Paris-Sud, Orsay, France, 1996).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Pandelakis, P. K.

Papagiannakis, A. G.

Parriaux, O.

O. Parriaux, V. Sychugov, A. Tischenco, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996).
[CrossRef]

Pascal, D.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[CrossRef]

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide using a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
[CrossRef] [PubMed]

D. Pascal, R. Orobtchouk, S. Laval, A. Koster, “Simple technique for fabricating limited coupler gratings by holographic method using standard thick photoresist,” Electron. Lett. 31, 914–915 (1995).
[CrossRef]

Pelloie, J. L.

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

Randina, I.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

Shah, V.

Soref, R.

R. Soref, “Applications of silicon based optoelectronics,” MRS Bull. 23, 20–24 (1998).

Sychugov, V.

O. Parriaux, V. Sychugov, A. Tischenco, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996).
[CrossRef]

Tamir, T.

Tischenco, A.

O. Parriaux, V. Sychugov, A. Tischenco, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996).
[CrossRef]

Vincent, P.

P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 101–122.
[CrossRef]

Visser, T. D.

T. D. Visser, H. Blok, D. Lenstra, “Modal analysis of a planar waveguide with gain and losses,” IEEE J. Quantum Electron. 31, 1803–1810 (1995).
[CrossRef]

Vonsovici, A.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[CrossRef]

Yegnanarayanan, S.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

Yoon, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

Yoshimoto, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

Appl. Opt.

Electron. Lett.

D. Pascal, R. Orobtchouk, S. Laval, A. Koster, “Simple technique for fabricating limited coupler gratings by holographic method using standard thick photoresist,” Electron. Lett. 31, 914–915 (1995).
[CrossRef]

IEEE J. Quantum Electron.

T. D. Visser, H. Blok, D. Lenstra, “Modal analysis of a planar waveguide with gain and losses,” IEEE J. Quantum Electron. 31, 1803–1810 (1995).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Randina, F. Coppinger, “Advances in silicon on insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron. 4, 938–947 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

MRS Bull.

R. Soref, “Applications of silicon based optoelectronics,” MRS Bull. 23, 20–24 (1998).

E. A. Fitzgerald, L. C. Kimerling, “Silicon based microphotonics and integrated optoelectronics,” MRS Bull. 23, 39–47 (1998).

Opt. Commun.

A. Layadi, A. Vonsovici, R. Orobtchouk, D. Pascal, A. Koster, “Low-loss optical waveguide on standard SOI/SIMOX substrate,” Opt. Commun. 146, 31–33 (1998).
[CrossRef]

Pure Appl. Opt.

O. Parriaux, V. Sychugov, A. Tischenco, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996).
[CrossRef]

Semicond. Int.

A. J. Auberton-Hervé, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, J. L. Pelloie, “SOI materials for ULSI applications,” Semicond. Int. 18, 97–104 (1995).

Other

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 5, pp. 123–157.
[CrossRef]

R. Orobtchouk, “Modélisation et étude de composants pour l’optique intégrée silicium sur isolant (Simox) à 1,3 µm,” Ph.D. dissertation 4106 (Université Paris-Sud, Orsay, France, 1996).

P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 101–122.
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of device and of spatial evolution of guided power. Coupling efficiency depends on the beam-waist value w 0 with respect to the decoupling length of the coupler L C , and on the distance of the maximum of the incident beam from the grating edge. AR, antireflection coating.

Fig. 2
Fig. 2

Characteristic length L C of coupler versus silicon dioxide thickness for various etching depth of grating in silicon.

Fig. 3
Fig. 3

Coupling factor F C versus silicon dioxide thickness for various etching depth of grating in silicon.

Fig. 4
Fig. 4

Experimental setup. DFB, distributed feedback.

Fig. 5
Fig. 5

Measured values of device reflectivity as a function of incidence angle for various incident beam-waist values.

Tables (2)

Tables Icon

Table 1 Refractive Index and Thickness of the Structure’s Various Layers

Tables Icon

Table 2 Comparison of the Experimental and Theoretical Values of the Coupling Efficiency for Various Beam Waists

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ηz=2kp,z|rz|2+Reirzq*zk0 sin Θ0+m 2πΛ×k0 sin Θ0+m 2πΛkp,z2k0 cos Θ0-+|Em,ykp,z, x|2dx,
qz=-+ pkzexpikz-kp,zzdkz,
pkz=A kzk0,z+kxk0,xk0kxexp-w02-kxk0,z+kzk0,x24k02+ikxdx-kzdz,
rz=-i -+ pkzexpikz-kp,zzkz-kp,z-ikp,z dkz.

Metrics