Abstract

We present the preliminary results of a metrological standard for fiber Bragg gratings. This device is based on well-established wavemeter concepts and allows for the a priori determination of Bragg resonances that are verifiable and accurate. Although the concept is demonstrated here with small-fringe-number samplings, the production and detection of images of 50,000 metering fringes was easily accomplished with a nonidealized imaging system. Thus, since the system is characteristically similar to a standard wavemeter, increased fringe counts produce accurate frequency counter ratios for the determination of Bragg resonances, allowing for its application as a universal metering tool for many holographic systems.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  2. D. R. Lyons, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986–1990).
  3. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  4. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [CrossRef]
  5. F. V. Kowalski, R. T. Hawkins, A. L. Schawlow, “Digital wavemeter for cw lasers,” J. Opt. Soc. Am. 66, 965–966 (1976).
    [CrossRef]
  6. F. V. Kowalski, R. E. Teets, W. Demtroder, A. L. Schawlow, “An improved wavemeter for cw lasers,” J. Opt. Soc. Am. 68, 1611–1613 (1978).
    [CrossRef]
  7. J. J. Snyder, “Laser wavelength meters,” Laser Focus World 18, 55–61 (1982).
  8. J. Ishikawa, N. Ito, K. Tanaka, “Accurate wavelength meter for cw lasers,” Appl. Opt. 25, 639–643 (1986).
    [CrossRef] [PubMed]
  9. D. R. Lyons, Z. U. Ndlela, “Method of and apparatus for calibrating precisely spaced multiple transverse holographic gratings in optical fibers,” U.S. patent5,552,882 (3September1996).
  10. S. G. Lipson, H. Lipson, D. S. Tannhauser, Optical Physics, 3rd ed. (Cambridge U. Press, New York, 1995), Chap. 12, pp. 327–341.
    [CrossRef]

1993

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

1989

1986

1982

J. J. Snyder, “Laser wavelength meters,” Laser Focus World 18, 55–61 (1982).

1978

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

F. V. Kowalski, R. E. Teets, W. Demtroder, A. L. Schawlow, “An improved wavemeter for cw lasers,” J. Opt. Soc. Am. 68, 1611–1613 (1978).
[CrossRef]

1976

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Demtroder, W.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Glenn, W. H.

Hawkins, R. T.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Ishikawa, J.

Ito, N.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kowalski, F. V.

Lipson, H.

S. G. Lipson, H. Lipson, D. S. Tannhauser, Optical Physics, 3rd ed. (Cambridge U. Press, New York, 1995), Chap. 12, pp. 327–341.
[CrossRef]

Lipson, S. G.

S. G. Lipson, H. Lipson, D. S. Tannhauser, Optical Physics, 3rd ed. (Cambridge U. Press, New York, 1995), Chap. 12, pp. 327–341.
[CrossRef]

Lyons, D. R.

D. R. Lyons, Z. U. Ndlela, “Method of and apparatus for calibrating precisely spaced multiple transverse holographic gratings in optical fibers,” U.S. patent5,552,882 (3September1996).

D. R. Lyons, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986–1990).

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Meltz, G.

Morey, W. W.

Ndlela, Z. U.

D. R. Lyons, Z. U. Ndlela, “Method of and apparatus for calibrating precisely spaced multiple transverse holographic gratings in optical fibers,” U.S. patent5,552,882 (3September1996).

Schawlow, A. L.

Snyder, J. J.

J. J. Snyder, “Laser wavelength meters,” Laser Focus World 18, 55–61 (1982).

Tanaka, K.

Tannhauser, D. S.

S. G. Lipson, H. Lipson, D. S. Tannhauser, Optical Physics, 3rd ed. (Cambridge U. Press, New York, 1995), Chap. 12, pp. 327–341.
[CrossRef]

Teets, R. E.

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

J. Opt. Soc. Am.

Laser Focus World

J. J. Snyder, “Laser wavelength meters,” Laser Focus World 18, 55–61 (1982).

Opt. Lett.

Other

D. R. Lyons, Z. U. Ndlela, “Method of and apparatus for calibrating precisely spaced multiple transverse holographic gratings in optical fibers,” U.S. patent5,552,882 (3September1996).

S. G. Lipson, H. Lipson, D. S. Tannhauser, Optical Physics, 3rd ed. (Cambridge U. Press, New York, 1995), Chap. 12, pp. 327–341.
[CrossRef]

D. R. Lyons, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986–1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Bragg reflection filter wavelength standard (wavemeter).

Fig. 2
Fig. 2

Traveling, fixed wavelength; (standard) interferometer.

Fig. 4
Fig. 4

Projected image of REF interference fringes and their oscilloscope trace.

Fig. 5
Fig. 5

Bragg grating written at 874.273 nm used for calibrating the wavemeter.

Fig. 6
Fig. 6

UV (top) and REF (bottom) signals along with magnified 3.92-kHz modulated signal.

Fig. 7
Fig. 7

UV (top) and REF (bottom) oscilloscope signals resulting from respective fringes.

Fig. 8
Fig. 8

Bragg peak (1) produced at angle θ and peaks (2) and (3) produced at angle θ + 0.4.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΛUVΛREFOR=ΛUVΛREFDP.
ΛB=λUV laser/sin θ1+sin θ2.
δ ratio/ratio=δ duration UV/duration UV+δduration REF/duration REF=0.05/38.6+0.05/38.9=0.26%.
δ ratio of period=0.659×0.26%/41/20.001.
δ REF spacing/REF spacing0.1%.
δ Bragg peak/Bragg peak2×0.1%=0.2%, δ Bragg peak±0.2%×Bragg peak.

Metrics