Abstract

A noncontact and compact optical displacement sensor is proposed and demonstrated. The principle of this system is based on the differential optical-fiber displacement sensor [Appl. Opt. 38, 1103 (1999)]. The waveguide of the sensor consists of three thin plate glasses. This approach can miniaturize and lighten the system. The performance of the sensor is geometrically analyzed. The linearity and working range of the sensor are significantly improved compared with those of the optical fiber.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Suganuma, A. Shimamoto, K. Tanaka, “Development of a differential optical fiber displacement sensor,” Appl. Opt. 38, 1103–1109 (1999).
    [CrossRef]
  2. M. Johnson, G. Goodman, “One- and two-dimensional, differential, reflective fiber displacement sensors,” Appl. Opt. 24, 2369–2372 (1985).
    [CrossRef] [PubMed]
  3. A. ShimamotoNano TEM Company, Ltd., “Position and thickness measurement systems,” Japanese patent pending 222094 (filed 5August1998).
  4. A. Shimamoto, K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35, 6767–6774 (1996).
    [CrossRef] [PubMed]
  5. R. O. Cook, C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18, 3230–3241 (1979).
    [CrossRef] [PubMed]

1999

1996

1985

1979

Cook, R. O.

Goodman, G.

Hamm, C. W.

Johnson, M.

Shimamoto, A.

Suganuma, F.

Tanaka, K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the multilayered optical-waveguide differential displacement sensor.

Fig. 2
Fig. 2

Analytical model.

Fig. 3
Fig. 3

Calculated Γ versus k - 1 relationship for two different waveguides.

Fig. 4
Fig. 4

Sensitivity versus k i relationship.

Fig. 5
Fig. 5

Experimental setup for examining the performance of the sensor.

Fig. 6
Fig. 6

V II - V I, V II + V I, and Γ versus y relationships for a gold-coated glass target.

Fig. 7
Fig. 7

Experimental Γ versus y relationship for three different targets.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k=2y tan ϕ/x0+1.
ĀI=1-k-11ki2-x21/2dx, ĀII=0  1kkI,
ĀI=-1kI-k-1ki2-x21/2dx, ĀII=KI-k-11ki2-x21/2dx, kIkkII,
ĀI=0,
ĀII=-1kII-k-1ki2-x21/2dx  kIIkkII+2,
Γ=VdifVsum=VII-VIVII+VI,
Γk=PIIk-PIkPIIk+PIk=AIIk-AIkAIIk+AIk.
S=2 tan ϕx0S¯=1.763 mm-1,

Metrics