Abstract

An optical measurement method for nonimaging radiation concentrators is proposed. A Lambertian light source is placed in the exit aperture of the concentrator. Looking into the concentrator’s entrance aperture from a remote position, one can photograph the transmission patterns. The patterns show the transmission of radiation through the concentrator with the full resolution of the four-dimensional phase space of geometric optics. By matching ray-tracing simulations to the measurement, one can achieve detailed and accurate information about the geometry of the concentrator. This is a remote, noncontact measurement and can be performed in situ for installed concentrators. Additional information regarding small-scale reflector waviness and surface reflectivity can also be obtained from the same measurement with additional analysis.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).
  2. R. P. Friedman, J. M. Gordon, H. Ries, “Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators,” Sol. Energy 56, 607–615, 1996.
  3. A. Rabl, Active Solar Collectors and their Applications (Oxford University, Oxford, 1985).
  4. A. Kribus, M. Huleihil, A. Timinger, R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69 (in press).
  5. D. Suresh, J. O’Gallagher, R. Winston, “Thermal and optical performance test results for compound parabolic concentrators (CPCs),” Sol. Energy 44, 257–270 (1990).
    [CrossRef]
  6. R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).
  7. D. R. Jenkins, H. Mönch, “Source imaging goniometer method of light source characterization for accurate projection system design,” in Society for Information Display (SID) Sym-posium 2000, Long Beach, Calif. (SID, San Jose, Calif., 2000), pp. 862–865.
  8. R. F. Rykowski, C. B. Wooley, “Source modeling for illumination design,” in Lens Design, Illumination, and Optomechanical Modeling, R. E. Fisher, R. Johnson, R. C. Juergens, W. J. Smith, P. R. Yoder, eds., Proc. SPIE3130, 204–208 (1997).
    [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).
  10. A. Harper, R. Hildeband, R. Stiening, R. Winston, “Heat trap: an optimized far infrared field optics system,” Appl. Opt. 15, 53–60 (1976).
    [CrossRef] [PubMed]
  11. P. Doron, A. Kribus, “Receiver partitioning: a performance boost for high-temperature solar applications,” in Eighth Symposium on Solar Thermal Concentrating Technologies, Cologne, Germany, 1996, M. Becker, M. Böhmer, eds. (C. F. Müller, Heidelberg, 1996), Vol. 2, pp. 621–629.
  12. A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).
  13. M. Shortis, G. Johnston, “Photogrammetry: an available surface characterization tool for solar concentrators, part II: assessment of surfaces,” J. Sol. Energy Eng. 119, 286–291 (1997).
    [CrossRef]

1997

M. Shortis, G. Johnston, “Photogrammetry: an available surface characterization tool for solar concentrators, part II: assessment of surfaces,” J. Sol. Energy Eng. 119, 286–291 (1997).
[CrossRef]

1996

R. P. Friedman, J. M. Gordon, H. Ries, “Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators,” Sol. Energy 56, 607–615, 1996.

1990

D. Suresh, J. O’Gallagher, R. Winston, “Thermal and optical performance test results for compound parabolic concentrators (CPCs),” Sol. Energy 44, 257–270 (1990).
[CrossRef]

1976

Abele, M.

R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).

Ben-Mair, R.

A. Kribus, M. Huleihil, A. Timinger, R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69 (in press).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).

Buck, R.

R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).

Denk, T.

R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).

Doron, P.

P. Doron, A. Kribus, “Receiver partitioning: a performance boost for high-temperature solar applications,” in Eighth Symposium on Solar Thermal Concentrating Technologies, Cologne, Germany, 1996, M. Becker, M. Böhmer, eds. (C. F. Müller, Heidelberg, 1996), Vol. 2, pp. 621–629.

A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).

Duchan, S.

A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).

Friedman, R. P.

R. P. Friedman, J. M. Gordon, H. Ries, “Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators,” Sol. Energy 56, 607–615, 1996.

Gordon, J. M.

R. P. Friedman, J. M. Gordon, H. Ries, “Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators,” Sol. Energy 56, 607–615, 1996.

Harper, A.

Heller, P.

R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).

Hildeband, R.

Huleihil, M.

A. Kribus, M. Huleihil, A. Timinger, R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69 (in press).

Jenkins, D. R.

D. R. Jenkins, H. Mönch, “Source imaging goniometer method of light source characterization for accurate projection system design,” in Society for Information Display (SID) Sym-posium 2000, Long Beach, Calif. (SID, San Jose, Calif., 2000), pp. 862–865.

Johnston, G.

M. Shortis, G. Johnston, “Photogrammetry: an available surface characterization tool for solar concentrators, part II: assessment of surfaces,” J. Sol. Energy Eng. 119, 286–291 (1997).
[CrossRef]

Karni, J.

A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).

Kribus, A.

P. Doron, A. Kribus, “Receiver partitioning: a performance boost for high-temperature solar applications,” in Eighth Symposium on Solar Thermal Concentrating Technologies, Cologne, Germany, 1996, M. Becker, M. Böhmer, eds. (C. F. Müller, Heidelberg, 1996), Vol. 2, pp. 621–629.

A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).

A. Kribus, M. Huleihil, A. Timinger, R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69 (in press).

Kunberger, J.

R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).

Lüpfert, R.

R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).

Mönch, H.

D. R. Jenkins, H. Mönch, “Source imaging goniometer method of light source characterization for accurate projection system design,” in Society for Information Display (SID) Sym-posium 2000, Long Beach, Calif. (SID, San Jose, Calif., 2000), pp. 862–865.

O’Gallagher, J.

D. Suresh, J. O’Gallagher, R. Winston, “Thermal and optical performance test results for compound parabolic concentrators (CPCs),” Sol. Energy 44, 257–270 (1990).
[CrossRef]

Rabl, A.

A. Rabl, Active Solar Collectors and their Applications (Oxford University, Oxford, 1985).

Ries, H.

R. P. Friedman, J. M. Gordon, H. Ries, “Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators,” Sol. Energy 56, 607–615, 1996.

Rubin, R.

A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).

Rykowski, R. F.

R. F. Rykowski, C. B. Wooley, “Source modeling for illumination design,” in Lens Design, Illumination, and Optomechanical Modeling, R. E. Fisher, R. Johnson, R. C. Juergens, W. J. Smith, P. R. Yoder, eds., Proc. SPIE3130, 204–208 (1997).
[CrossRef]

Shortis, M.

M. Shortis, G. Johnston, “Photogrammetry: an available surface characterization tool for solar concentrators, part II: assessment of surfaces,” J. Sol. Energy Eng. 119, 286–291 (1997).
[CrossRef]

Stiening, R.

Suresh, D.

D. Suresh, J. O’Gallagher, R. Winston, “Thermal and optical performance test results for compound parabolic concentrators (CPCs),” Sol. Energy 44, 257–270 (1990).
[CrossRef]

Taragan, E.

A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).

Timinger, A.

A. Kribus, M. Huleihil, A. Timinger, R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69 (in press).

Welford, W. T.

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

Winston, R.

D. Suresh, J. O’Gallagher, R. Winston, “Thermal and optical performance test results for compound parabolic concentrators (CPCs),” Sol. Energy 44, 257–270 (1990).
[CrossRef]

A. Harper, R. Hildeband, R. Stiening, R. Winston, “Heat trap: an optimized far infrared field optics system,” Appl. Opt. 15, 53–60 (1976).
[CrossRef] [PubMed]

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).

Wooley, C. B.

R. F. Rykowski, C. B. Wooley, “Source modeling for illumination design,” in Lens Design, Illumination, and Optomechanical Modeling, R. E. Fisher, R. Johnson, R. C. Juergens, W. J. Smith, P. R. Yoder, eds., Proc. SPIE3130, 204–208 (1997).
[CrossRef]

Appl. Opt.

J. Sol. Energy Eng.

M. Shortis, G. Johnston, “Photogrammetry: an available surface characterization tool for solar concentrators, part II: assessment of surfaces,” J. Sol. Energy Eng. 119, 286–291 (1997).
[CrossRef]

Sol. Energy

R. P. Friedman, J. M. Gordon, H. Ries, “Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators,” Sol. Energy 56, 607–615, 1996.

A. Kribus, M. Huleihil, A. Timinger, R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69 (in press).

D. Suresh, J. O’Gallagher, R. Winston, “Thermal and optical performance test results for compound parabolic concentrators (CPCs),” Sol. Energy 44, 257–270 (1990).
[CrossRef]

Other

R. Buck, M. Abele, J. Kunberger, T. Denk, P. Heller, R. Lüpfert, “Receiver for solar-hybrid gas turbine and combined cycle systems,” in Solar Thermal Concentrating Technologies, G. Flamant, A. Ferriere, F. Pharabod, eds., J. Phys. IV9, 537–544 (1998).

D. R. Jenkins, H. Mönch, “Source imaging goniometer method of light source characterization for accurate projection system design,” in Society for Information Display (SID) Sym-posium 2000, Long Beach, Calif. (SID, San Jose, Calif., 2000), pp. 862–865.

R. F. Rykowski, C. B. Wooley, “Source modeling for illumination design,” in Lens Design, Illumination, and Optomechanical Modeling, R. E. Fisher, R. Johnson, R. C. Juergens, W. J. Smith, P. R. Yoder, eds., Proc. SPIE3130, 204–208 (1997).
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).

A. Rabl, Active Solar Collectors and their Applications (Oxford University, Oxford, 1985).

P. Doron, A. Kribus, “Receiver partitioning: a performance boost for high-temperature solar applications,” in Eighth Symposium on Solar Thermal Concentrating Technologies, Cologne, Germany, 1996, M. Becker, M. Böhmer, eds. (C. F. Müller, Heidelberg, 1996), Vol. 2, pp. 621–629.

A. Kribus, P. Doron, J. Karni, R. Rubin, E. Taragan, S. Duchan, “Multistage solar receivers: the route to high temperature,” in Proceedings of International Solar Energy Society Solar World Congress, Jerusalem, Israel, 1999 (International Solar Energy Society, Freiburg, Germany, 2000).

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Representation of the transmission function by transmission patterns. The rays are falling on the entrance aperture of a CPC with a 10° acceptance half-angle. Collimated radiation is incident at an angle of 10° to the CPC optical axis. One ray crosses the aperture within a dark region and is rejected through the entrance aperture after two reflections. The other ray crosses the entrance aperture through a light region and is transmitted to the exit aperture. The numbers in the light regions denote the number of reflections before transmission.

Fig. 2
Fig. 2

Pentagonal concentrator before the mirrors are glued to the chassis. Starting from 1, the pentagonal exit aperture, one can distinguish 2 and 3, the two rings of plane facets, and 4, the parabolic sheets.

Fig. 3
Fig. 3

Measurement system: the secondary concentrator, the laser used for alignment of the optical axis, and the camera. The axial distance between the concentrator’s entrance aperture and the camera is 2.71 m. The maximal lateral displacement from the axis was 0.65 m. The outer diameter of the entrance aperture is 0.335 m.

Fig. 4
Fig. 4

Transmission patterns as seen from different positions of observation. Black regions correspond to rejected radiation. The first three photographs were taken from angles of (a) -5.3°, (b) -10.2°, and (c) -12.1° (to the left of the optical axis). The final photographs were taken from angles of (d) 6.0°, (e) 11.6°, and (f) 13.8° (to the right of the optical axis).

Fig. 5
Fig. 5

Geometric acceptance, i.e., the compliment of rejection, as derived from the photographs. Horizontal bars illustrate the angular spread from the position of the observer. Negative angles correspond to radiation coming from a side of the entrance aperture; positive angles correspond to radiation coming from the edge of the aperture. Transmission of collimated radiation as obtained by ray-tracing simulations assuming the designed concentrator shape is shown by the dashed curve.

Fig. 6
Fig. 6

Three transmission patterns as seen from 11.5° left of the optical axis: (a) photograph taken in the laboratory, (b) simulation of concentrator as designed, (c) simulation of the concentrator with added variations of shape for a better match with (a). The arrows highlight features that are better reproduced in (c) compared with (b).

Metrics