Abstract

We present the results of an experiment designed to measure the changes in the radiometric calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from the time of its manufacture to the time of the start of on-orbit operations. The experiment uses measurements of the Sun at the manufacturer’s facility to predict the instrument outputs during solar measurements immediately after launch. Because an onboard diffuser plate is required for these measurements, the experiment measures changes in the instrument–diffuser system. There is no mechanism in this experiment to separate changes in the diffuser from changes in the instrument. For the eight SeaWiFS bands, the initial instrument outputs on orbit averaged 0.8% higher than predicted with a standard deviation of 0.9%. The greatest difference was 2.1% (actual output higher than predicted) for band 3. The estimated uncertainty for the experiment is 3%. Thus the transfer-to-orbit experiment shows no changes in the radiometric sensitivities of the SeaWiFS bands—at the 3% level—from the completion of the instrument’s manufacture to its insertion into orbit.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Barnes, C. R. McClain, “The calibration of seawifs after two years on orbit,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. B. Lurie, eds., Proc. SPIE3870, 214–227 (1999).
    [CrossRef]
  2. R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
    [CrossRef]
  3. J. J. Hsia, V. R. Weidner, “NBS 45-degree/normal reflectometer for absolute reflectance factors,” Metrologia 17, 97–102 (1981).
    [CrossRef]
  4. V. R. Weidner, J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
    [CrossRef]
  5. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).
  6. B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  7. C. Wehrli, “Extraterrestrial solar spectrum,” (Physikalisch-Meterologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, 1985).
  8. R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 104566, Vol. 39, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).
  9. S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).
  10. R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).
  11. H. Neckel, D. Labs, “The solar radiation between 3300 and 12,500 Å,” Sol. Phys. 90, 205–258 (1984).
    [CrossRef]
  12. E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variation,” Space Sci. Rev. 16, 771–802 (1974).
    [CrossRef]
  13. R. A. Barnes, “SeaWiFS data: actual and simulated,” http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  14. R. A. Barnes, W. E. Esaias, “A nominal top-of-the-atmosphere spectrum for SeaWiFS,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 104566, Vol. 40, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997).
  15. S. F. Biggar, D. I. Gelman, P. N. Slater, “Improved evaluation of optical depth components from Langley plot data,” Remote Sens. Environ. 32, 91–101 (1990).
    [CrossRef]
  16. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Geophysical Directorate Phillips Laboratory, Hanscom Air Force Base, Mass., 1990).
  17. R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from solar and lunar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
    [CrossRef]
  18. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995).
    [CrossRef] [PubMed]
  19. M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
    [CrossRef]
  20. D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
    [CrossRef]
  21. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

1999 (2)

M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from solar and lunar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

1998 (1)

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

1997 (1)

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

1995 (1)

1990 (1)

S. F. Biggar, D. I. Gelman, P. N. Slater, “Improved evaluation of optical depth components from Langley plot data,” Remote Sens. Environ. 32, 91–101 (1990).
[CrossRef]

1984 (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12,500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

1981 (2)

J. J. Hsia, V. R. Weidner, “NBS 45-degree/normal reflectometer for absolute reflectance factors,” Metrologia 17, 97–102 (1981).
[CrossRef]

V. R. Weidner, J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
[CrossRef]

1974 (1)

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variation,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Barnes, R. A.

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from solar and lunar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

R. A. Barnes, W. E. Esaias, “A nominal top-of-the-atmosphere spectrum for SeaWiFS,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 104566, Vol. 40, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997).

R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
[CrossRef]

R. A. Barnes, C. R. McClain, “The calibration of seawifs after two years on orbit,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. B. Lurie, eds., Proc. SPIE3870, 214–227 (1999).
[CrossRef]

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 104566, Vol. 39, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).

S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

Barnes, W. L.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Geophysical Directorate Phillips Laboratory, Hanscom Air Force Base, Mass., 1990).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Geophysical Directorate Phillips Laboratory, Hanscom Air Force Base, Mass., 1990).

Biggar, S. F.

S. F. Biggar, D. I. Gelman, P. N. Slater, “Improved evaluation of optical depth components from Langley plot data,” Remote Sens. Environ. 32, 91–101 (1990).
[CrossRef]

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

Brokenow, W.

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Caffrey, R. T.

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Clark, D. K.

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Cleave, M. L.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Early, E. A.

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Eplee, R. E.

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from solar and lunar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 104566, Vol. 39, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

Esaias, W. E.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).

R. A. Barnes, W. E. Esaias, “A nominal top-of-the-atmosphere spectrum for SeaWiFS,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 104566, Vol. 40, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997).

Feldman, G. C.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Ge, Y.

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Gelman, D. I.

S. F. Biggar, D. I. Gelman, P. N. Slater, “Improved evaluation of optical depth components from Langley plot data,” Remote Sens. Environ. 32, 91–101 (1990).
[CrossRef]

Gordon, H. R.

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995).
[CrossRef] [PubMed]

Gottlieb, D. M.

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variation,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Gregg, W. W.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Holmes, A. W.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).

R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
[CrossRef]

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

Hooker, S. B.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Hsia, J. J.

J. J. Hsia, V. R. Weidner, “NBS 45-degree/normal reflectometer for absolute reflectance factors,” Metrologia 17, 97–102 (1981).
[CrossRef]

V. R. Weidner, J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
[CrossRef]

Johnson, B. C.

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

Kuring, N.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12,500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

McClain, C. R.

R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from solar and lunar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
[CrossRef]

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).

R. A. Barnes, C. R. McClain, “The calibration of seawifs after two years on orbit,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. B. Lurie, eds., Proc. SPIE3870, 214–227 (1999).
[CrossRef]

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12,500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

Patt, F. S.

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Geophysical Directorate Phillips Laboratory, Hanscom Air Force Base, Mass., 1990).

Slater, P. N.

S. F. Biggar, D. I. Gelman, P. N. Slater, “Improved evaluation of optical depth components from Langley plot data,” Remote Sens. Environ. 32, 91–101 (1990).
[CrossRef]

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

Smith, E. V. P.

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variation,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Svitek, T.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).

Thome, K. J.

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

Trees, C.

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Voss, K. K.

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Wang, M.

M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

Wehrli, C.

C. Wehrli, “Extraterrestrial solar spectrum,” (Physikalisch-Meterologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, 1985).

Weidner, V. R.

J. J. Hsia, V. R. Weidner, “NBS 45-degree/normal reflectometer for absolute reflectance factors,” Metrologia 17, 97–102 (1981).
[CrossRef]

V. R. Weidner, J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
[CrossRef]

Zalewski, E. F.

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

Appl. Opt. (2)

J. Geophys. Res. (1)

D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Metrologia (1)

J. J. Hsia, V. R. Weidner, “NBS 45-degree/normal reflectometer for absolute reflectance factors,” Metrologia 17, 97–102 (1981).
[CrossRef]

Remote Sens. Environ. (2)

M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
[CrossRef]

S. F. Biggar, D. I. Gelman, P. N. Slater, “Improved evaluation of optical depth components from Langley plot data,” Remote Sens. Environ. 32, 91–101 (1990).
[CrossRef]

Sea Technol. (1)

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Sol. Phys. (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12,500 Å,” Sol. Phys. 90, 205–258 (1984).
[CrossRef]

Space Sci. Rev. (1)

E. V. P. Smith, D. M. Gottlieb, “Solar flux and its variation,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Other (11)

R. A. Barnes, “SeaWiFS data: actual and simulated,” http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).

R. A. Barnes, W. E. Esaias, “A nominal top-of-the-atmosphere spectrum for SeaWiFS,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 104566, Vol. 40, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997).

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md.1994).

B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).

C. Wehrli, “Extraterrestrial solar spectrum,” (Physikalisch-Meterologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, 1985).

R. A. Barnes, R. E. Eplee, “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 104566, Vol. 39, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).

S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).

R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999-206892, Vol. 5, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Geophysical Directorate Phillips Laboratory, Hanscom Air Force Base, Mass., 1990).

R. A. Barnes, C. R. McClain, “The calibration of seawifs after two years on orbit,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, J. B. Lurie, eds., Proc. SPIE3870, 214–227 (1999).
[CrossRef]

R. A. Barnes, A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE1939, 224–232 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SeaWiFS scanner assembly. The scanner mounts to the spacecraft with four mounting points at the top of the figure.

Fig. 2
Fig. 2

Laboratory measurements of the diffuser reflectance. System-level BRDF measurements were made for each SeaWiFS band. The line is a regression to the measured values.

Fig. 3
Fig. 3

Solar irradiance model used in the experiment. Values are given at 1-nm intervals.

Fig. 4
Fig. 4

Spectral responses for the eight SeaWiFS bands.

Fig. 5
Fig. 5

Atmospheric transmittances for the ground portion of the experiment. Measurements were taken with a ten-channel solar radiometer.

Fig. 6
Fig. 6

Use of an occulting disk to remove the direct solar beam during the ground portion of the experiment.

Fig. 7
Fig. 7

Normalized diffuser radiances for the SeaWiFS bands. The radiances are normalized to unity at day 39 after launch. The curve in each panel represents the extrapolation to the launch date.

Fig. 8
Fig. 8

Differences of the on-orbit DN’s from the predicted values. The comparison is from Table 6. The on-orbit DN’s were calculated for the date of the SeaWiFS launch. The uncertainty estimates are from Subsection 5.C.

Tables (6)

Tables Icon

Table 1 SeaWiFS Calibration Coefficients for the Transfer-to-Orbit Experimenta

Tables Icon

Table 2 Calculated Results from the Summations in Eq. (14)a

Tables Icon

Table 3 Measurements from the Ground Portion of the Experimenta

Tables Icon

Table 4 Calculation of the Predicted DN’s On Orbit by use of Eq. (14)a

Tables Icon

Table 5 DN’s from the First SeaWiFS Measurement of the Sun (DNM)a

Tables Icon

Table 6 Extrapolation of the DN’s from the First SeaWiFS Solar Measurement to Those on the First Day of the Instrument On Orbit (DNE)a

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

FλϕI, θI, ϕS, θS=ΩASLλϕS, θScosθSdAsdΩAIEλϕI, θIcosθIdAI,
FλϕI, θI=LλEλ cosθI
S-S0=λ1λ2LλRλdλ-0,
S=K2gDN-DN0,
LB=λ1λ2LλRλdλλ1λ2Rλdλ=SA1λ2Rλdλ,
LB=k2gDN-DN0,
k2g=K2gλ1λ2Rλdλ.
Eλ=ES,λD2
Lλ=FλϕI, θIES,λD2cosθI,
DN-DN0=cosθIk2gD2λ1λ2FλϕI, θIES,λRλdλλ1λ2Rλdλ.
DN-DN0B=cosθIBk2gBDB2λ=3801150FλϕI, θIES,λRλΔλλ=3801150RλΔλ,
DN-DN0A=cosθIAk2gADA2×λ=3801150FλϕI,θIES,λTλRλΔλλ=3801150RλΔλ,
DN-DN0BDN-DN0A=cosθ1Bk2gBDB2λ=3801150FλϕI, θIES,λRλΔλλ=3801150RλΔλcosθIAk2gADA2λ=3801150FλϕI, θIES,λTλRλΔλλ=3801150RλΔλ.
DN-DN0B=k2gAk2gBDA2DB2×λ=3801150FλϕI, θIES,λRλΔλλ=3801150FλϕI, θIES,λTλRλΔλ×DN-DN0A.
λ=3801150Fλ(ϕI, θI)ES,λTλRλΔλλ=3801150RλΔλλ=3801150FλϕI, θIRλΔλλ=3801150RλΔλ×λ=3801150ES,λRλΔλλ=3801150RλΔλλ=3801150TλRλΔλλ=3801150RλΔλ.
λ=3801150Fλ(ϕIθ,I)ES,λRλΔλλ=3801150FλϕI, θIES,λTλRλΔλλ=3801150TλRλΔλλ=3801150RλΔλ-1,
k2(gA)k2(gB)
λ=3801150FλϕI, θIES,λRλΔλ
λ=3801150FλϕI, θIES,λTλRλΔλ
k2gAk2(gB
DA2DB2
λ=3801150 FλϕI, θIES,λRλΔλλ=3801150 FλϕI, θIES,λTλRλΔλ
DNMDN-DN0B
DNEDN-DN0B

Metrics