Abstract

A distributed-feedback InGaAs laser diode emitting near 1.393 µm is used in conjunction with an optical multipass cell that is open to the atmosphere to yield ambient water-vapor measurements by infrared absorption spectroscopy. To obtain the high dynamic range for the measurements that is required for continuous water-vapor monitoring in the upper troposphere and the lower stratosphere, we used a simple circuit that combined differential and direct detection. Furthermore, the laser emission wavelength was tuned to balance the steep decrease in H2O concentration with altitude by sweeping molecular transitions of stronger line strengths. The technique was implemented by use of the Spectromètre à Diodes Laser Accordables (SDLA), a tunable diode laser spectrometer operated from a stratospheric balloon. Absorption spectra of H2O in the 5–30-km altitude range obtained at 1-s intervals during recent balloon flights are reported. Water-vapor mixing ratios were retrieved from the absorption spectra by a fit to the full molecular line shape in conjunction with in situ pressure and temperature measurements, with a precision error ranging from 5% to 10%.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription