Abstract

In situ measurements of CO concentration were recorded with tunable diode-laser absorption spectroscopy techniques in both the exhaust and the immediate post-flame regions of an atmospheric-pressure flat-flame burner operating on ethylene air. Two room-temperature cw single-mode InGaAsSb/AlGaAsSb diode lasers operating near 2.3 µm were tuned over individual transitions in the CO first overtone band (v′ = 2 ← v″ = 0) to record high-resolution absorption line shapes in the exhaust duct [79 cm above the burner, ∼470 K; R(15) transition at 4311.96 cm-1] and the immediate postflame zone [1.5 cm above the burner, 1820–1975 K; R(30) transition at 4343.81 cm-1]. The CO concentration was determined from the measured absorption and the gas temperature, which was monitored with type-S thermocouples. For measurements in the exhaust duct, the noise-equivalent absorbance was ∼3 × 10-5 (50-kHz detection bandwidth, 50-sweep average, 0.1-s total measurement time), which corresponds to a CO detection limit of 1.5 ppm m at 470 K. Wavelength modulation spectroscopy techniques were used to improve the detection limit in the exhaust to ∼0.1 ppm m (∼500-Hz detection bandwidth, 20-sweep average, 0.4-s total measurement time). For measurements in the immediate postflame zone, the measured CO concentrations in the fuel-rich flames were in good agreement with chemical equilibrium predictions. These experiments demonstrate the utility of diode-laser absorption sensors operating near 2.3 µm for in situ combustion emission monitoring and combustion diagnostics.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Brouwer, B. A. Ault, J. E. Bobrow, G. S. Samuelsen, “Active control for gas turbine combustors,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1087–1092.
  2. S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
    [CrossRef]
  3. J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990).
    [CrossRef]
  4. U.S. Government, Code of Federal Regulations, 40CFR60, Office of the Federal Register, Washington, D.C.
  5. U.S. Government, Code of Federal Regulations, 40CFR264/266, Office of the Federal Register, Washington, D.C.
  6. J. A. Jahnke, Continuous Emission Monitoring (Van Nostrand Reinhold, New York, 1993), pp. 31–58.
  7. S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
    [CrossRef]
  8. Q. V. Nguyen, B. L. Edgar, R. W. Dibble, “Experimental and numerical comparison of extractive and in situ laser measurements of nonequilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
    [CrossRef]
  9. U.S. Government, “Method 10: determination of carbon monoxide emissions from stationary sources,” Reference Methods promulgated under Code of Federal Regulations, 40CFR60, Office of the Federal Register, Washington, D.C.
  10. P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
    [CrossRef]
  11. J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh, “Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame,” Appl. Opt. 32, 6082–6089 (1993).
    [CrossRef]
  12. R. G. Daniel, K. L. Mcnesby, A. W. Miziolek, “Application of tunable diode laser diagnostics for temperature and species concentration profiles of inhibited low-pressure flames,” Appl. Opt. 35, 4018–4025 (1996).
    [CrossRef] [PubMed]
  13. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
    [CrossRef]
  14. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  15. D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
    [CrossRef]
  16. M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
    [CrossRef]
  17. J. S. Major, J. S. Osinski, D. F. Welch, “8.5 W cw 2.0-µm InGaAsP laser diodes,” Electron. Lett. 29, 2112–2214 (1993).
    [CrossRef]
  18. H. K. Choi, G. W. Turner, S. I. Eglash, “High-power GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 µm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
    [CrossRef]
  19. D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.
  20. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  21. D. Bradley, K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).
    [CrossRef]
  22. M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).
  23. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  24. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  25. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  26. H. Riris, C. B. Carlisle, R. E. Warren, D. E. Cooper, “Signal-to-noise enhancement in frequency-modulation spectrometers by digital signal processing,” Opt. Lett. 19, 144–146 (1994).
    [CrossRef]
  27. J.-P. Bouanich, C. Brodbeck, “Mesure des largeurs et des deplacements des raies de la bande 0 → 2 de CO autoperturbe et perturbe par N2, O2, H2, HCl, NO et CO2,” J. Quant. Spectrosc. Radiat. Transfer 13, 1–7 (1973).
    [CrossRef]
  28. J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000-K temperature range,” Appl. Opt. 27, 3063–3065 (1988).
    [CrossRef] [PubMed]
  29. G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
    [CrossRef]
  30. P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
    [CrossRef]
  31. U.S. EPA Office of Air and Radiation, “1997 national air quality: status and trends” (1998), http://www.epa.gov/oar/aqtrnd97/brochure/co.html .
  32. A. Brock, N. Mina-Camilde, C. Manzanares, “Vibrational spectroscopy of C-H bonds of C2H4 liquid and C2H4 in liquid argon solutions,” J. Phys. Chem. 98, 4800–4808 (1994).
    [CrossRef]

1999 (1)

1998 (2)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997 (1)

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

1996 (1)

1995 (1)

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, “Experimental and numerical comparison of extractive and in situ laser measurements of nonequilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

1994 (3)

H. K. Choi, G. W. Turner, S. I. Eglash, “High-power GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 µm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[CrossRef]

H. Riris, C. B. Carlisle, R. E. Warren, D. E. Cooper, “Signal-to-noise enhancement in frequency-modulation spectrometers by digital signal processing,” Opt. Lett. 19, 144–146 (1994).
[CrossRef]

A. Brock, N. Mina-Camilde, C. Manzanares, “Vibrational spectroscopy of C-H bonds of C2H4 liquid and C2H4 in liquid argon solutions,” J. Phys. Chem. 98, 4800–4808 (1994).
[CrossRef]

1993 (3)

1992 (1)

1990 (1)

J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990).
[CrossRef]

1989 (1)

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

1988 (1)

1981 (4)

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1973 (1)

J.-P. Bouanich, C. Brodbeck, “Mesure des largeurs et des deplacements des raies de la bande 0 → 2 de CO autoperturbe et perturbe par N2, O2, H2, HCl, NO et CO2,” J. Quant. Spectrosc. Radiat. Transfer 13, 1–7 (1973).
[CrossRef]

1968 (1)

D. Bradley, K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).
[CrossRef]

Ahvazi, B.

Allen, M. G.

Ase, H.

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

Ault, B. A.

J. Brouwer, B. A. Ault, J. E. Bobrow, G. S. Samuelsen, “Active control for gas turbine combustors,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1087–1092.

Baer, D.

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

Baer, D. S.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).

Belenky, G.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

Bobrow, J. E.

J. Brouwer, B. A. Ault, J. E. Bobrow, G. S. Samuelsen, “Active control for gas turbine combustors,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1087–1092.

Bouanich, J.-P.

J.-P. Bouanich, C. Brodbeck, “Mesure des largeurs et des deplacements des raies de la bande 0 → 2 de CO autoperturbe et perturbe par N2, O2, H2, HCl, NO et CO2,” J. Quant. Spectrosc. Radiat. Transfer 13, 1–7 (1973).
[CrossRef]

Bradley, D.

D. Bradley, K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).
[CrossRef]

Brock, A.

A. Brock, N. Mina-Camilde, C. Manzanares, “Vibrational spectroscopy of C-H bonds of C2H4 liquid and C2H4 in liquid argon solutions,” J. Phys. Chem. 98, 4800–4808 (1994).
[CrossRef]

Brodbeck, C.

J.-P. Bouanich, C. Brodbeck, “Mesure des largeurs et des deplacements des raies de la bande 0 → 2 de CO autoperturbe et perturbe par N2, O2, H2, HCl, NO et CO2,” J. Quant. Spectrosc. Radiat. Transfer 13, 1–7 (1973).
[CrossRef]

Brouwer, J.

J. Brouwer, B. A. Ault, J. E. Bobrow, G. S. Samuelsen, “Active control for gas turbine combustors,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1087–1092.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Capewell, D.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

Carlisle, C. B.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Choi, H. K.

H. K. Choi, G. W. Turner, S. I. Eglash, “High-power GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 µm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[CrossRef]

Connolly, J.

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

Cooper, D. E.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Daniel, R. G.

Dibble, R. W.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, “Experimental and numerical comparison of extractive and in situ laser measurements of nonequilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Dimarco, L.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

Dohne, S. M.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Edgar, B. L.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, “Experimental and numerical comparison of extractive and in situ laser measurements of nonequilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Eglash, S. I.

H. K. Choi, G. W. Turner, S. I. Eglash, “High-power GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 µm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[CrossRef]

Elreedy, S.

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Fujii, S.

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Garbuzov, D.

D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Hanson, R.

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

Hanson, R. K.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).

Hartmann, J. M.

Hassanzadeh, P.

Hurst, W. S.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Jahnke, J. A.

J. A. Jahnke, Continuous Emission Monitoring (Van Nostrand Reinhold, New York, 1993), pp. 31–58.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Khalfin, V.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.

Kilgroe, J. D.

J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lanier, W. S.

J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990).
[CrossRef]

Lee, H.

D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

Maiorov, M.

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

Major, J. S.

J. S. Major, J. S. Osinski, D. F. Welch, “8.5 W cw 2.0-µm InGaAsP laser diodes,” Electron. Lett. 29, 2112–2214 (1993).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Manzanares, C.

A. Brock, N. Mina-Camilde, C. Manzanares, “Vibrational spectroscopy of C-H bonds of C2H4 liquid and C2H4 in liquid argon solutions,” J. Phys. Chem. 98, 4800–4808 (1994).
[CrossRef]

Martinelli, R.

D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Matthews, K. J.

D. Bradley, K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).
[CrossRef]

Mccann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mcnesby, K. L.

Menna, R.

D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Miller, J. H.

Mina-Camilde, N.

A. Brock, N. Mina-Camilde, C. Manzanares, “Vibrational spectroscopy of C-H bonds of C2H4 liquid and C2H4 in liquid argon solutions,” J. Phys. Chem. 98, 4800–4808 (1994).
[CrossRef]

Miziolek, A. W.

Nelson, L. P.

J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Nguyen, Q. V.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, “Experimental and numerical comparison of extractive and in situ laser measurements of nonequilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Nogami, Y.

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

Osinski, J. S.

J. S. Major, J. S. Osinski, D. F. Welch, “8.5 W cw 2.0-µm InGaAsP laser diodes,” Electron. Lett. 29, 2112–2214 (1993).
[CrossRef]

Palmer, R. E.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Perrin, M. Y.

Philippe, L. C.

Rahn, L. A.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Riris, H.

Rosasco, G. J.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Rosenmann, L.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Samuelsen, G. S.

J. Brouwer, B. A. Ault, J. E. Bobrow, G. S. Samuelsen, “Active control for gas turbine combustors,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1087–1092.

Sanders, S. T.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).

Schindler, P. J.

J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990).
[CrossRef]

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Shirai, M.

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

Silver, J. A.

Sonnenfroh, D. M.

Taine, J.

Tomiyama, S.

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

Turner, G. W.

H. K. Choi, G. W. Turner, S. I. Eglash, “High-power GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 µm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[CrossRef]

Upschulte, B. L.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Varghese, P. L.

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

Wang, J.

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).

Warren, R. E.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webber, M. E.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).

Welch, D. F.

J. S. Major, J. S. Osinski, D. F. Welch, “8.5 W cw 2.0-µm InGaAsP laser diodes,” Electron. Lett. 29, 2112–2214 (1993).
[CrossRef]

Woldu, F.

Yokoyama, T.

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Combust. Flame (1)

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, “Experimental and numerical comparison of extractive and in situ laser measurements of nonequilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Combust. Sci. Technol. (2)

J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Electron. Lett. (1)

J. S. Major, J. S. Osinski, D. F. Welch, “8.5 W cw 2.0-µm InGaAsP laser diodes,” Electron. Lett. 29, 2112–2214 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. K. Choi, G. W. Turner, S. I. Eglash, “High-power GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 µm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994).
[CrossRef]

J. Chem. Phys. (1)

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

J. Mech. Eng. Sci. (1)

D. Bradley, K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).
[CrossRef]

J. Mol. Spectrosc. (1)

P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981).
[CrossRef]

J. Phys. Chem. (1)

A. Brock, N. Mina-Camilde, C. Manzanares, “Vibrational spectroscopy of C-H bonds of C2H4 liquid and C2H4 in liquid argon solutions,” J. Phys. Chem. 98, 4800–4808 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

J.-P. Bouanich, C. Brodbeck, “Mesure des largeurs et des deplacements des raies de la bande 0 → 2 de CO autoperturbe et perturbe par N2, O2, H2, HCl, NO et CO2,” J. Quant. Spectrosc. Radiat. Transfer 13, 1–7 (1973).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

JSME Int. J. Ser. C (1)

S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Opt. Lett. (1)

Other (10)

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).

U.S. EPA Office of Air and Radiation, “1997 national air quality: status and trends” (1998), http://www.epa.gov/oar/aqtrnd97/brochure/co.html .

D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999).
[CrossRef]

M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999).
[CrossRef]

D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.

J. Brouwer, B. A. Ault, J. E. Bobrow, G. S. Samuelsen, “Active control for gas turbine combustors,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1087–1092.

U.S. Government, “Method 10: determination of carbon monoxide emissions from stationary sources,” Reference Methods promulgated under Code of Federal Regulations, 40CFR60, Office of the Federal Register, Washington, D.C.

U.S. Government, Code of Federal Regulations, 40CFR60, Office of the Federal Register, Washington, D.C.

U.S. Government, Code of Federal Regulations, 40CFR264/266, Office of the Federal Register, Washington, D.C.

J. A. Jahnke, Continuous Emission Monitoring (Van Nostrand Reinhold, New York, 1993), pp. 31–58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Survey spectra of CO and major combustion products H2O and CO2 at 500 K based on the HITRAN96 database.

Fig. 2
Fig. 2

Wavelength versus temperature characteristics for an InGaAsSb/AlGaAsSb laser (0.25-mm cavity length) at a fixed current (90 mA). The inset shows the lasing spectra acquired at 18.5 °C.

Fig. 3
Fig. 3

Calculated spectra of H2O (10%) and CO (10 ppm) at 500 K and 1 atm based on HITRAN96 parameters.

Fig. 4
Fig. 4

Calculated spectra of H2O (10%), CO2 (10%), and CO (500 ppm) at 1500 K and 1 atm based on HITEMP96 parameters.

Fig. 5
Fig. 5

Calculated line strengths and corresponding relative temperature sensitivities of the CO R(15) and R(30) transitions as a function of temperature.

Fig. 6
Fig. 6

Schematic diagram of the experimental setup for in situ CO measurements in the exhaust and immediate postflame regions of a flat-flame burner.

Fig. 7
Fig. 7

Measured integrated areas (per centimeter beam path) at various pressures for the CO R(15) and R(30) transitions.

Fig. 8
Fig. 8

Radial thermocouple-temperature (uncorrected) profiles measured 1.5 cm above the burner surface for various equivalence ratios.

Fig. 9
Fig. 9

Measured CO line-shape [R(15) transition, 50-sweep average] recorded in the exhaust duct (X CO = 22 ppm, ϕ = 0.97, T ∼ 470 K, L = 120 cm).

Fig. 10
Fig. 10

Measured CO concentrations recorded using direct-absorption spectroscopy in the exhaust duct (T ∼ 470 K, P = 1 atm) as a function of the equivalence ratio.

Fig. 11
Fig. 11

Schematic diagram for CO measurements in the exhaust duct by using WMS techniques.

Fig. 12
Fig. 12

Representative 2f line shapes (∼1.46 modulation index, 20-sweep average) for CO measurements in the exhaust duct.

Fig. 13
Fig. 13

Measured CO concentrations in the exhaust duct when WMS (2f) techniques (2.5-Hz measurement repetition rate) are used. The inset shows the time variation of CO concentration (ϕ = 0.53) recorded with a 100-Hz measurement repetition rate.

Fig. 14
Fig. 14

C2H4 feature was observed in the measured 2f trace recorded in the exhaust duct in a near-blowout condition (ϕ = 0.48). The trace recorded in the ϕ = 1.02 condition (amplified by 5 and shifted at the dc level) was used to provide the reference frequency frame.

Fig. 15
Fig. 15

Measured CO line-shape [R(30) transition, 50-sweep average] recorded 1.5 cm above an atmospheric-pressure flat-flame burner (ϕ = 0.83, X CO = 366 ppm, T core = 1820 K, P = 1 atm, L = 11.4 cm).

Fig. 16
Fig. 16

Measured CO concentration and radiation-corrected thermocouple temperature recorded 1.5 cm above an atmospheric-pressure premixed (C2H4-air) flat-flame burner as a function of the equivalence ratio.

Tables (3)

Tables Icon

Table 1 HITRAN96 Coefficients of the Polynomial [Q(T) = a + bT + cT2 + dT3] for the Partition Function of CO

Tables Icon

Table 2 Fundamental Spectroscopic Data of the CO R(15) and R(30) Transitions (v′ = 2 ← v″ = 0)

Tables Icon

Table 3 Collision-Broadening Coefficients γj T 0 and Their Corresponding Temperature Exponents n j of the CO R(15) Transition a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Tν=II0=exp-0L XCOxPSixΦix, νdx,
ν Φix, νdν1.
ai=ln 21/2ΔνC,iΔνD,i,
ΔνD,i=7.1623×10-7ν0,iT/M1/2
ΔνC,i=PjXj2γj,i,
γj,iT=γj,iT0T0Tnj,i,
SiT=SiT0QT0QTT0Texp-hcEik1T-1T0×1-exp-hcν0,ikT1-exp-hcν0,ikT0-1,
QT=a+bT+cT2+dT3.
ν-lnTνdν=0L XCOxPSixdx,
XCO=ν-lnTνdνP 0L Sxdx.
νt=ν¯+a cos2πft,
It=I0tTνt=I0tk=0k=+ Hkν¯, acosk2πft,
2f signal  I0H2ν¯, a=I01π-π+π Tv¯+a cosu×cos2udu.
XCO,meas  H2ν¯, aI01+δnoiseH2ν¯, aI01+δnoiseH0ν¯, a=2fsignaldcsignal,
XCOScorePLeff0L XCOxPSxdx.
XCOcore=ν-lnTνdνPScoreLeffLL.

Metrics