Abstract

The finite-difference time-domain (FDTD) technique is examined for its suitability for studying light scattering by highly refractive dielectric particles. It is found that, for particles with large complex refractive indices, the FDTD solution of light scattering is sensitive to the numerical treatments associated with the particle boundaries. Herein, appropriate treatments of the particle boundaries and related electric fields in the frequency domain are introduced and examined to improve the accuracy of the FDTD solutions. As a result, it is shown that, for a large complex refractive index of 7.1499 + 2.914i for particles with size parameters smaller than 6, the errors in extinction and absorption efficiencies from the FDTD method are generally less than ∼4%. The errors in the scattering phase function are less than ∼5%. We conclude that the present FDTD scheme with appropriate boundary treatments can provide a reliable solution for light scattering by nonspherical particles with large complex refractive indices.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription