Abstract

A new approach for retrieving aerosol properties from extinction spectra is extended to retrieve aerosol properties from lidar backscatter measurements. In this method it is assumed that aerosol properties are expressed as a linear combination of backscatters at three or fewer wavelengths commonly used in lidar measurements. The coefficients in the weighted linear combination are obtained by minimization of the retrieval error averaged for a set of testing size distributions. The formulas can be used easily by investigators to retrieve aerosol properties from lidar backscatter measurements such as the Lidar In-Space Technology Experiment and Pathfinder Instruments for Clouds and Aerosols Spaceborne Observations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Hobbs, ed., Aerosol–Cloud–Climate Interactions (Academic, San Diego, Calif., 1993).
  2. J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
    [CrossRef]
  3. D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichon,” J. Geophys. Res. 94, 5029–5041 (1989).
    [CrossRef]
  4. M. P. McCormick, “SAGE II: an overview,” Adv. Space Res. 7, 319–326 (1987).
    [CrossRef]
  5. L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).
  6. M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998).
    [CrossRef]
  7. G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
    [CrossRef]
  8. G. K. Yue, “A new approach to retrieval of aerosol size distributions and integral properties from SAGE II aerosol extinction spectra,” J. Geophys. Res. 104, 27,491–27,506 (1999).
    [CrossRef]
  9. Y. Liu, W. P. Arnott, J. Hallett, “Particle size distribution retrieval from multispectral optical optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31,753–31,762 (1999).
    [CrossRef]
  10. D. Muller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
    [CrossRef]
  11. H. Jager, D. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
    [CrossRef] [PubMed]
  12. R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements, III, optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976).
    [CrossRef]
  13. J. Goodman, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19-km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
    [CrossRef]
  14. J. M. Rosen, D. J. Hofmann, “Optical modeling of stratospheric aerosols: present status,” Appl. Opt. 25, 410–419 (1986).
    [CrossRef] [PubMed]
  15. G. S. Kent, G. K. Yue, “The modeling of CO2 lidar backscatter from stratospheric aerosols,” J. Geophys. Res. 96, 5279–5292 (1991).
    [CrossRef]
  16. H. M. Steele, R. P. Turco, “Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion,” J. Geophys. Res. 102, 16,737–16,747 (1997).
    [CrossRef]
  17. K. F. Palmer, D. Williams, “Optical constants of sulfuric acid: applications to clouds of Venus,” Appl. Opt. 14, 208–219 (1975).
    [CrossRef] [PubMed]
  18. G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
    [CrossRef]
  19. R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
    [CrossRef]
  20. D. C. Woods, D. M. Winker, O. Youngbluth, M. T. Osborn, R. J. DeCoursey, “Long-term observations of the mid-latitude stratospheric aerosol from the Mount Pinatubo eruption,” in Laser Radar Technology and Applications, G. W. Kamerman, ed., Proc. SPIE2748, 341–348 (1996).
  21. G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
    [CrossRef]
  22. M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
    [CrossRef]
  23. D. M. Winker, “Global observations of aerosols and clouds from combined lidar and passive instruments to improve radiation budget and climate studies,” in Proceedings of the 10th Conference on Atmospheric Radiation, June 28–July 2 1999 (American Meteorological Society, Boston, Mass., 1999), pp. 290–293.

1999 (3)

G. K. Yue, “A new approach to retrieval of aerosol size distributions and integral properties from SAGE II aerosol extinction spectra,” J. Geophys. Res. 104, 27,491–27,506 (1999).
[CrossRef]

Y. Liu, W. P. Arnott, J. Hallett, “Particle size distribution retrieval from multispectral optical optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31,753–31,762 (1999).
[CrossRef]

D. Muller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[CrossRef]

1998 (1)

M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998).
[CrossRef]

1997 (1)

H. M. Steele, R. P. Turco, “Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion,” J. Geophys. Res. 102, 16,737–16,747 (1997).
[CrossRef]

1995 (1)

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

1994 (4)

G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
[CrossRef]

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
[CrossRef]

J. Goodman, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19-km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

1993 (1)

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

1991 (2)

1989 (1)

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichon,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

1987 (1)

M. P. McCormick, “SAGE II: an overview,” Adv. Space Res. 7, 319–326 (1987).
[CrossRef]

1986 (1)

1985 (1)

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

1976 (1)

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements, III, optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976).
[CrossRef]

1975 (1)

1964 (1)

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

Allen, D. A.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
[CrossRef]

Ansmann, A.

Arnott, W. P.

Y. Liu, W. P. Arnott, J. Hallett, “Particle size distribution retrieval from multispectral optical optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31,753–31,762 (1999).
[CrossRef]

Browell, E. V.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Chiou, E. W.

G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
[CrossRef]

Coakley, J. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

D’Altorio, A.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

DeCoursey, R. J.

D. C. Woods, D. M. Winker, O. Youngbluth, M. T. Osborn, R. J. DeCoursey, “Long-term observations of the mid-latitude stratospheric aerosol from the Mount Pinatubo eruption,” in Laser Radar Technology and Applications, G. W. Kamerman, ed., Proc. SPIE2748, 341–348 (1996).

Deshler, T.

M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998).
[CrossRef]

Ferry, G. V.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
[CrossRef]

J. Goodman, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19-km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

Fiocco, G.

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

Gardner, C. S.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Goodman, J.

J. Goodman, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19-km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

Grams, G.

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

Guy, J. H.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Hallett, J.

Y. Liu, W. P. Arnott, J. Hallett, “Particle size distribution retrieval from multispectral optical optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31,753–31,762 (1999).
[CrossRef]

Heisey, C. W.

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

Hervig, M. E.

M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998).
[CrossRef]

Hoff, R. M.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Hofmann, D.

Hofmann, D. J.

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichon,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

J. M. Rosen, D. J. Hofmann, “Optical modeling of stratospheric aerosols: present status,” Appl. Opt. 25, 410–419 (1986).
[CrossRef] [PubMed]

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements, III, optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976).
[CrossRef]

Jager, H.

Kent, G. S.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

G. S. Kent, G. K. Yue, “The modeling of CO2 lidar backscatter from stratospheric aerosols,” J. Geophys. Res. 96, 5279–5292 (1991).
[CrossRef]

Ko, M. K. W.

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

Liu, Y.

Y. Liu, W. P. Arnott, J. Hallett, “Particle size distribution retrieval from multispectral optical optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31,753–31,762 (1999).
[CrossRef]

Masc, F.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

Mauldin, L. E.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

McCormick, M. P.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

M. P. McCormick, “SAGE II: an overview,” Adv. Space Res. 7, 319–326 (1987).
[CrossRef]

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Melfi, S. H.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Menzies, R. T.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Muller, D.

Osborn, M. T.

D. C. Woods, D. M. Winker, O. Youngbluth, M. T. Osborn, R. J. DeCoursey, “Long-term observations of the mid-latitude stratospheric aerosol from the Mount Pinatubo eruption,” in Laser Radar Technology and Applications, G. W. Kamerman, ed., Proc. SPIE2748, 341–348 (1996).

Palmer, K. F.

Pinnick, R. G.

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements, III, optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976).
[CrossRef]

Platt, C. M. R.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Poole, L. R.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
[CrossRef]

Pueschel, R. F.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
[CrossRef]

J. Goodman, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19-km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

Randall, D. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Reagan, J. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Rizi, V.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

Rodriguez, J. M.

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

Rosen, J. M.

J. M. Rosen, D. J. Hofmann, “Optical modeling of stratospheric aerosols: present status,” Appl. Opt. 25, 410–419 (1986).
[CrossRef] [PubMed]

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements, III, optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976).
[CrossRef]

Russell, J. M.

M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998).
[CrossRef]

Russell, P. B.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
[CrossRef]

Snetsinger, K. G.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
[CrossRef]

Solomon, S.

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichon,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

Steele, H. M.

H. M. Steele, R. P. Turco, “Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion,” J. Geophys. Res. 102, 16,737–16,747 (1997).
[CrossRef]

Sze, N. D.

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

Turco, R. P.

H. M. Steele, R. P. Turco, “Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion,” J. Geophys. Res. 102, 16,737–16,747 (1997).
[CrossRef]

Vaughn, W. R.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Veiga, R. E.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

Verma, S.

J. Goodman, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19-km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

Visconti, G.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

Wandinger, U.

Wang, P.-H.

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
[CrossRef]

Williams, D.

Winker, D. M.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

D. C. Woods, D. M. Winker, O. Youngbluth, M. T. Osborn, R. J. DeCoursey, “Long-term observations of the mid-latitude stratospheric aerosol from the Mount Pinatubo eruption,” in Laser Radar Technology and Applications, G. W. Kamerman, ed., Proc. SPIE2748, 341–348 (1996).

D. M. Winker, “Global observations of aerosols and clouds from combined lidar and passive instruments to improve radiation budget and climate studies,” in Proceedings of the 10th Conference on Atmospheric Radiation, June 28–July 2 1999 (American Meteorological Society, Boston, Mass., 1999), pp. 290–293.

Woods, D. C.

D. C. Woods, D. M. Winker, O. Youngbluth, M. T. Osborn, R. J. DeCoursey, “Long-term observations of the mid-latitude stratospheric aerosol from the Mount Pinatubo eruption,” in Laser Radar Technology and Applications, G. W. Kamerman, ed., Proc. SPIE2748, 341–348 (1996).

Youngbluth, O.

D. C. Woods, D. M. Winker, O. Youngbluth, M. T. Osborn, R. J. DeCoursey, “Long-term observations of the mid-latitude stratospheric aerosol from the Mount Pinatubo eruption,” in Laser Radar Technology and Applications, G. W. Kamerman, ed., Proc. SPIE2748, 341–348 (1996).

Yue, G. K.

G. K. Yue, “A new approach to retrieval of aerosol size distributions and integral properties from SAGE II aerosol extinction spectra,” J. Geophys. Res. 104, 27,491–27,506 (1999).
[CrossRef]

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
[CrossRef]

G. S. Kent, G. K. Yue, “The modeling of CO2 lidar backscatter from stratospheric aerosols,” J. Geophys. Res. 96, 5279–5292 (1991).
[CrossRef]

Zaun, N. H.

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Adv. Space Res. (1)

M. P. McCormick, “SAGE II: an overview,” Adv. Space Res. 7, 319–326 (1987).
[CrossRef]

Appl. Opt. (4)

Bull. Am. Meteorol. Soc. (1)

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Geophys. Res. Lett. (3)

G. K. Yue, L. R. Poole, M. P. McCormick, R. E. Veiga, P.-H. Wang, V. Rizi, F. Masc, A. D’Altorio, G. Visconti, “Comparing simultaneous stratospheric aerosol and ozone lidar measurements with SAGE II data after the Mount Pinatubo eruption,” Geophys. Res. Lett. 22, 1881–1884 (1995).
[CrossRef]

J. Goodman, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19-km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

J. M. Rodriguez, M. K. W. Ko, N. D. Sze, C. W. Heisey, G. K. Yue, M. P. McCormick, “Ozone response to enhanced heterogeneous processing after the eruption of mount pinatubo,” Geophys. Res. Lett. 21, 209–212 (1994).
[CrossRef]

J. Atmos. Sci. (2)

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements, III, optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976).
[CrossRef]

J. Geophys. Res. (8)

G. S. Kent, G. K. Yue, “The modeling of CO2 lidar backscatter from stratospheric aerosols,” J. Geophys. Res. 96, 5279–5292 (1991).
[CrossRef]

H. M. Steele, R. P. Turco, “Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion,” J. Geophys. Res. 102, 16,737–16,747 (1997).
[CrossRef]

G. K. Yue, L. R. Poole, P.-H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994).
[CrossRef]

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a Sun-tracking photometer,” J. Geophys. Res. 99, 12,915–12,922 (1994).
[CrossRef]

G. K. Yue, “A new approach to retrieval of aerosol size distributions and integral properties from SAGE II aerosol extinction spectra,” J. Geophys. Res. 104, 27,491–27,506 (1999).
[CrossRef]

Y. Liu, W. P. Arnott, J. Hallett, “Particle size distribution retrieval from multispectral optical optical depth: influences of particle nonsphericity and refractive index,” J. Geophys. Res. 104, 31,753–31,762 (1999).
[CrossRef]

M. E. Hervig, T. Deshler, J. M. Russell, “Aerosol size distributions obtained from HALOE spectral extinction measurements,” J. Geophys. Res. 103, 1573–1583 (1998).
[CrossRef]

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichon,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

Opt. Eng. (1)

L. E. Mauldin, N. H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric Aerosol and Gas Experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Other (3)

P. V. Hobbs, ed., Aerosol–Cloud–Climate Interactions (Academic, San Diego, Calif., 1993).

D. C. Woods, D. M. Winker, O. Youngbluth, M. T. Osborn, R. J. DeCoursey, “Long-term observations of the mid-latitude stratospheric aerosol from the Mount Pinatubo eruption,” in Laser Radar Technology and Applications, G. W. Kamerman, ed., Proc. SPIE2748, 341–348 (1996).

D. M. Winker, “Global observations of aerosols and clouds from combined lidar and passive instruments to improve radiation budget and climate studies,” in Proceedings of the 10th Conference on Atmospheric Radiation, June 28–July 2 1999 (American Meteorological Society, Boston, Mass., 1999), pp. 290–293.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Upper and lower limits of assumed number of densities in each bin for N 1 = 1: (a) unimodal log normal, (b) bimodal log normal.

Fig. 2
Fig. 2

Comparison of model size distribution and distributions retrieved from backscatter measurements at three wavelengths: 1.06, 0.694, and 0.532 µm. Vertical lines indicate 2σ values that are due to measurement errors.

Fig. 3
Fig. 3

Systematic errors for different aerosol size distributions retrieved from backscatter measurements at three wavelengths: 1.06, 0.694, and 0.532 µm.

Fig. 4
Fig. 4

Comparison of model size distribution and distributions retrieved from extinction measurements at two wavelengths: 1.06 and 0.532 µm. Vertical lines indicate 2σ values that are due to measurement errors.

Fig. 5
Fig. 5

Comparison of model size distribution and distributions retrieved from extinction measurements at two wavelengths: 1.06 and 0.694 µm. Vertical lines indicate 2σ values that are due to measurement errors.

Fig. 6
Fig. 6

Comparison of model size distribution and distributions retrieved from extinction measurements at one wavelength, 1.06 µm. Vertical lines indicate 2σ values that are due to measurement errors.

Tables (8)

Tables Icon

Table 1 Parameters of the Six Log-normal Size Distributions

Tables Icon

Table 2 Laser Wavelengths and Index of Refractions

Tables Icon

Table 3 Formulas and Average Composite Errors for Retrieval of Surface Area Density for Stratospheric Aerosolsa

Tables Icon

Table 4 Formulas and Average Composite Errors for Retrieval of Volume Density for Stratospheric Aerosolsa

Tables Icon

Table 5 Retrieval Errors of Aerosol Surface Area Density

Tables Icon

Table 6 Retrieval Errors of Aerosol Volume Density

Tables Icon

Table 7 Formulas and Average Composite Errors for Retrieval of Surface Area Density when the Aerosol Type is Unknowna

Tables Icon

Table 8 Formulas and Average Composite Errors for Retrieval of Volume Density when the Aerosol Type is Unknowna

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dNrdr=12πi=12Nir ln σiexp-ln2r/rgi2 ln2 σi,
ni=1Δrriri+1dNrdrdr,
A=RaRb4πr2dNrdrdr,
V=RaRb43 πr3dNrdrdr,
Bλ=1k2RaRb Iλr, mλ,c,TdNrdrdr,
Pj=k=1p CqkBqk,
δPj,t=Pj-PjPj.
σP2=k=1p Cqk2σB,qk2,
ηPj,t=σPPj.
ΔPj,t2=δPj,t2+ηPj,t2.
Δav=1Lj=1L ΔPj,t.
C=B-1P,

Metrics