Abstract

An instrument named the grating scale monitor for measuring the outer scale ℒ0 from the angle-of-arrival (AA) fluctuations of a perturbed wave front was developed a few years ago at Nice University. The AA is detected with a 5-ms time resolution by modulation of the stellar image in a small telescope with a grating. One uses the normalized covariance of AA fluctuations to estimate ℒ0. A new version of this instrument, the generalized seeing monitor (GSM) is described. It consists of four identical modules for measuring the AA at four locations on the wave front. A spatiotemporal analysis of these data leads to the determination of seeing ∊0, outer scale ℒ0, and the wave-front speed. In addition, isoplanatic angle θ0 is determined from scintillation, making the characterization of turbulence with the GSM almost complete. We describe the instrument and make a detailed analysis of its performance and accuracy. Several site-testing campaigns have been conducted with the GSM: at La Silla (Chile), Oukaïmeden (Morocco), Maidanak (Uzbekistan), and Cerro Pachon and Cerro Paranal (Chile). The main results of these campaigns are presented and discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ziad, “Estimation des échelles limites de cohérence spatiale des fronts d’onde et optimisation des observations à Haute Résolution Angulaire en Astronomie,” Ph.D. dissertation, (Université de Nice-Sophia Antipolis, Nice, France), 1993.
  2. A. Ziad, J. Borgnino, A. Agabi, F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
    [CrossRef]
  3. R. Sasiela, Electromagnetic Wave Propagation in Turbulence. Evaluation and Application of Mellin Transforms (Springer-Verlag, New York, 1994).
    [CrossRef]
  4. D. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568–1573 (1991).
    [CrossRef]
  5. G. Boreman, C. Dainty, “Zernike expansions for non-Kolmogorov turbulence,” J. Opt. Soc. Am. A 13, 517–522 (1996).
    [CrossRef]
  6. R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
    [CrossRef]
  7. C. Coulman, J. Vernin, Y. Coqueugniot, J. Caccia, “Outer scale of turbulence appropriate to modeling refractive-index structure profiles,” Appl. Opt. 27, 155–160 (1988).
    [CrossRef] [PubMed]
  8. J. Borgnino, “Estimation of the spatial coherence outer scale relevant to long baseline interferometry and imaging in optical astronomy,” Appl. Opt. 29, 1863–1865 (1990).
    [CrossRef] [PubMed]
  9. V. Lukin, E. Nosov, B. Fortes, “Effective outer scale of atmospheric turbulence,” Opt. Atmosferi 10, 162–171 (1958).
  10. F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).
  11. M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  12. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 351–391.
  13. J. Borgnino, F. Martin, A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992).
    [CrossRef]
  14. R. Lutomirski, H. Yura, “Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere,” J. Opt. Soc. Am. 61, 482–486 (1971).
    [CrossRef]
  15. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam, 1981), Vol. 19, 281–376.
  16. J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New-York, 1971).
  17. B. Frieden, Probability, Statistical Optics, and Data Testing (Springer-Verlag, Berlin, 1983).
    [CrossRef]
  18. H. Martin, “Image motion as a measure of seeing quality,” Publ. Astronom. Soc. Pac. 99, 1360–1370 (1987).
    [CrossRef]
  19. A. Consortini, L. Ronchi, “Choice of the model of atmospheric turbulence,” Appl. Opt. 5, 1205–1211 (1972).
    [CrossRef]
  20. V. P. Lukin, “Optical Measurements of the outer scale of the atmospheric turbulence,” Atmos. Oceanic Opt. 4, 229–242 (1992).
  21. V. P. Lukin, “Intercomparison of models of the atmospheric turbulence spectrum,” Atmos. Oceanic Opt. 6, 628–631 (1993).
  22. V. Voitsekhovich, “Outer scale of turbulence: comparison of different models,” J. Opt. Soc. Am. A 12, 1346–1353 (1995).
    [CrossRef]
  23. C. Gardner, “Effects of random path fluctuations on the accuracy of laser ranging systems,” Appl. Opt. 15, 2539–2545 (1976).
    [CrossRef] [PubMed]
  24. J. Krause-Polstorff, A. Edmund, L. W. Donald, “Instrument comparison: corrected stellar scintillometer versus isoplanometer,” Appl. Opt. 32, 4051–4057 (1993).
    [PubMed]
  25. G. Loos, C. Hogge, “Turbulence of the upper atmosphere and isoplanatism,” Appl. Opt. 18, 2654–2661 (1979).
    [CrossRef] [PubMed]
  26. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1978), pp. 1–6.
  27. R. Avila, J. Vernin, S. Cuevas, “Turbulence profiles with generalized scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pacific 110, 1106–1116 (1998).
    [CrossRef]
  28. V. Kornilov, “The four-channel stellar photometer with dichroic beam-splitter,” Baltic Astron. 7, 513–524 (1998).
  29. R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.
  30. F. Roddier, J. Gilli, G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982).
    [CrossRef]
  31. A. Tokovinin, “A new method to measure the atmospheric image quality,” Astron. Lett. 24, 768–771 (1998).
  32. F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

1998 (4)

R. Avila, J. Vernin, S. Cuevas, “Turbulence profiles with generalized scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pacific 110, 1106–1116 (1998).
[CrossRef]

V. Kornilov, “The four-channel stellar photometer with dichroic beam-splitter,” Baltic Astron. 7, 513–524 (1998).

A. Tokovinin, “A new method to measure the atmospheric image quality,” Astron. Lett. 24, 768–771 (1998).

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

1997 (1)

1996 (1)

1995 (1)

1994 (2)

A. Ziad, J. Borgnino, A. Agabi, F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
[CrossRef]

F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).

1993 (2)

V. P. Lukin, “Intercomparison of models of the atmospheric turbulence spectrum,” Atmos. Oceanic Opt. 6, 628–631 (1993).

J. Krause-Polstorff, A. Edmund, L. W. Donald, “Instrument comparison: corrected stellar scintillometer versus isoplanometer,” Appl. Opt. 32, 4051–4057 (1993).
[PubMed]

1992 (2)

V. P. Lukin, “Optical Measurements of the outer scale of the atmospheric turbulence,” Atmos. Oceanic Opt. 4, 229–242 (1992).

J. Borgnino, F. Martin, A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992).
[CrossRef]

1991 (1)

1990 (2)

1988 (1)

1987 (1)

H. Martin, “Image motion as a measure of seeing quality,” Publ. Astronom. Soc. Pac. 99, 1360–1370 (1987).
[CrossRef]

1982 (1)

F. Roddier, J. Gilli, G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982).
[CrossRef]

1979 (1)

1976 (1)

1972 (1)

A. Consortini, L. Ronchi, “Choice of the model of atmospheric turbulence,” Appl. Opt. 5, 1205–1211 (1972).
[CrossRef]

1971 (1)

1958 (1)

V. Lukin, E. Nosov, B. Fortes, “Effective outer scale of atmospheric turbulence,” Opt. Atmosferi 10, 162–171 (1958).

Agabi, A.

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
[CrossRef]

A. Ziad, J. Borgnino, A. Agabi, F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
[CrossRef]

F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).

Avila, R.

R. Avila, J. Vernin, S. Cuevas, “Turbulence profiles with generalized scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pacific 110, 1106–1116 (1998).
[CrossRef]

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
[CrossRef]

R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.

Bendat, J.

J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New-York, 1971).

Boreman, G.

Borgnino, J.

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
[CrossRef]

F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).

A. Ziad, J. Borgnino, A. Agabi, F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
[CrossRef]

J. Borgnino, F. Martin, A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992).
[CrossRef]

J. Borgnino, “Estimation of the spatial coherence outer scale relevant to long baseline interferometry and imaging in optical astronomy,” Appl. Opt. 29, 1863–1865 (1990).
[CrossRef] [PubMed]

R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.

Caccia, J.

Conan, R.

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.

Consortini, A.

A. Consortini, L. Ronchi, “Choice of the model of atmospheric turbulence,” Appl. Opt. 5, 1205–1211 (1972).
[CrossRef]

Coqueugniot, Y.

Coulman, C.

Creath, K.

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 351–391.

Cuevas, S.

R. Avila, J. Vernin, S. Cuevas, “Turbulence profiles with generalized scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pacific 110, 1106–1116 (1998).
[CrossRef]

Dainty, C.

Donald, L. W.

Edmund, A.

Fortes, B.

V. Lukin, E. Nosov, B. Fortes, “Effective outer scale of atmospheric turbulence,” Opt. Atmosferi 10, 162–171 (1958).

Frieden, B.

B. Frieden, Probability, Statistical Optics, and Data Testing (Springer-Verlag, Berlin, 1983).
[CrossRef]

Gardner, C.

Gilli, J.

F. Roddier, J. Gilli, G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982).
[CrossRef]

Hogge, C.

Hufnagel, R. E.

R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1978), pp. 1–6.

Kornilov, V.

V. Kornilov, “The four-channel stellar photometer with dichroic beam-splitter,” Baltic Astron. 7, 513–524 (1998).

Krause-Polstorff, J.

Loos, G.

Lukin, V.

V. Lukin, E. Nosov, B. Fortes, “Effective outer scale of atmospheric turbulence,” Opt. Atmosferi 10, 162–171 (1958).

Lukin, V. P.

V. P. Lukin, “Intercomparison of models of the atmospheric turbulence spectrum,” Atmos. Oceanic Opt. 6, 628–631 (1993).

V. P. Lukin, “Optical Measurements of the outer scale of the atmospheric turbulence,” Atmos. Oceanic Opt. 4, 229–242 (1992).

Lund, G.

F. Roddier, J. Gilli, G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982).
[CrossRef]

Lutomirski, R.

Martin, F.

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
[CrossRef]

A. Ziad, J. Borgnino, A. Agabi, F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
[CrossRef]

F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).

J. Borgnino, F. Martin, A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992).
[CrossRef]

R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.

Martin, H.

H. Martin, “Image motion as a measure of seeing quality,” Publ. Astronom. Soc. Pac. 99, 1360–1370 (1987).
[CrossRef]

Nosov, E.

V. Lukin, E. Nosov, B. Fortes, “Effective outer scale of atmospheric turbulence,” Opt. Atmosferi 10, 162–171 (1958).

Piersol, A.

J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New-York, 1971).

Roddier, F.

M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

F. Roddier, J. Gilli, G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982).
[CrossRef]

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam, 1981), Vol. 19, 281–376.

Ronchi, L.

A. Consortini, L. Ronchi, “Choice of the model of atmospheric turbulence,” Appl. Opt. 5, 1205–1211 (1972).
[CrossRef]

Sarazin, M.

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

Sasiela, R.

R. Sasiela, Electromagnetic Wave Propagation in Turbulence. Evaluation and Application of Mellin Transforms (Springer-Verlag, New York, 1994).
[CrossRef]

Tokovinin, A.

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

A. Tokovinin, “A new method to measure the atmospheric image quality,” Astron. Lett. 24, 768–771 (1998).

R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
[CrossRef]

F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).

R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.

Vernin, J.

R. Avila, J. Vernin, S. Cuevas, “Turbulence profiles with generalized scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pacific 110, 1106–1116 (1998).
[CrossRef]

C. Coulman, J. Vernin, Y. Coqueugniot, J. Caccia, “Outer scale of turbulence appropriate to modeling refractive-index structure profiles,” Appl. Opt. 27, 155–160 (1988).
[CrossRef] [PubMed]

Voitsekhovich, V.

Winker, D.

Yura, H.

Ziad, A.

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
[CrossRef]

A. Ziad, J. Borgnino, A. Agabi, F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
[CrossRef]

F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).

J. Borgnino, F. Martin, A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992).
[CrossRef]

A. Ziad, “Estimation des échelles limites de cohérence spatiale des fronts d’onde et optimisation des observations à Haute Résolution Angulaire en Astronomie,” Ph.D. dissertation, (Université de Nice-Sophia Antipolis, Nice, France), 1993.

R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.

Appl. Opt. (6)

Astron. Astrophys. (2)

F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

Astron. Astrophys. Suppl. Ser. (1)

F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).

Astron. Lett. (1)

A. Tokovinin, “A new method to measure the atmospheric image quality,” Astron. Lett. 24, 768–771 (1998).

Atmos. Oceanic Opt. (2)

V. P. Lukin, “Optical Measurements of the outer scale of the atmospheric turbulence,” Atmos. Oceanic Opt. 4, 229–242 (1992).

V. P. Lukin, “Intercomparison of models of the atmospheric turbulence spectrum,” Atmos. Oceanic Opt. 6, 628–631 (1993).

Baltic Astron. (1)

V. Kornilov, “The four-channel stellar photometer with dichroic beam-splitter,” Baltic Astron. 7, 513–524 (1998).

Exp. Astron. (1)

A. Ziad, J. Borgnino, A. Agabi, F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
[CrossRef]

J. Opt. (Paris) (1)

F. Roddier, J. Gilli, G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Opt. Atmosferi (1)

V. Lukin, E. Nosov, B. Fortes, “Effective outer scale of atmospheric turbulence,” Opt. Atmosferi 10, 162–171 (1958).

Opt. Commun. (1)

J. Borgnino, F. Martin, A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992).
[CrossRef]

Publ. Astron. Soc. Pacific (1)

R. Avila, J. Vernin, S. Cuevas, “Turbulence profiles with generalized scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pacific 110, 1106–1116 (1998).
[CrossRef]

Publ. Astronom. Soc. Pac. (1)

H. Martin, “Image motion as a measure of seeing quality,” Publ. Astronom. Soc. Pac. 99, 1360–1370 (1987).
[CrossRef]

Other (8)

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 351–391.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf ed., (Elsevier, Amsterdam, 1981), Vol. 19, 281–376.

J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New-York, 1971).

B. Frieden, Probability, Statistical Optics, and Data Testing (Springer-Verlag, Berlin, 1983).
[CrossRef]

A. Ziad, “Estimation des échelles limites de cohérence spatiale des fronts d’onde et optimisation des observations à Haute Résolution Angulaire en Astronomie,” Ph.D. dissertation, (Université de Nice-Sophia Antipolis, Nice, France), 1993.

R. Sasiela, Electromagnetic Wave Propagation in Turbulence. Evaluation and Application of Mellin Transforms (Springer-Verlag, New York, 1994).
[CrossRef]

R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.

R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1978), pp. 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(b) The signal detected by the GSM photomultiplier corresponds to the transmitted flux of the star image during its displacement on a Ronchi grating. (a) The image position is shifted by means of an oscillating mirror. AD, photon counts integrated over 0.5 ms. The ABCD counts for forward and backward scans are averaged to yield the phase shift of the flux sinusoid that corresponds to AA fluctuation.

Fig. 2
Fig. 2

Optical schematic of a GSM module. The telescope is Maksutov–Cassegrain type with 10-cm diameter: 1, field lens; 2, collimating lens; 3, cylindrical lens; 4, modulating mirror; 5, focusing lens; 6, Ronchi grating; 7, Fabry lens; 8, photomultiplier.

Fig. 3
Fig. 3

GSM configuration: Modules 1 and 2 are installed on the same mount and work in a differential mode.

Fig. 4
Fig. 4

Effect of the finite exposure time (a) on the measured AA differential variance and (b) on the scintillation index for various wind speeds Vg at ground level. In each case the wind was parallel to the baseline. Data obtained at La Silla Observatory during the campaign of August–September 1997 and binned during processing to increase the exposure time.

Fig. 5
Fig. 5

Effect of the atmospheric turbulence model on ℒ0 estimation with the GSM. ℒ0VK and ℒ0GT are the outer-scale values from the von Kármán and Greenwood–Tarazano models, respectively. The data were obtained during the campaign of August–September 1997 at La Silla Observatory.

Fig. 6
Fig. 6

Isoplanatic angle measurements obtained with the GSM at Maidanak Observatory during the night of 22 July 1998. Measurements of θ0 (sp) obtained simultaneously with a scintillometer are presented for comparison.

Fig. 7
Fig. 7

Distribution of isoplanatic angle θ0 [in arcseconds (as)] measured with the GSM at La Silla Observatory in August–September 1997. These data are well fitted with a log-normal distribution.

Fig. 8
Fig. 8

Examples of temporal cross correlations of AA fluctuations obtained with six GSM baselines at La Silla Observatory (18 September 1997 at 01:38 UT). The turbulent layer wind-speed vector was constructed from the peak positions.

Fig. 9
Fig. 9

Outer-scale measurements obtained with a GSM at La Silla Observatory during one night (14 September 1997). The errors in the individual measurements are deduced both from the six baseline statistical rms dispersion and from the GSM global (experimental) error.

Fig. 10
Fig. 10

Outer-scale and seeing measurements obtained with the GSM at several sites: (a) La Silla, (b) Oukaïmeden, (c) Maidanak, (d) Cerro Pachon, and (e) Cerro Paranal. Bars indicate intervals that contain 68% of parameter values for each night (±1σ of the log-normal nightly distributions).

Tables (1)

Tables Icon

Table 1 Data Summary of Sites Visited by the GSMa

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Φ=12πtan-1D-BA-C.
γ=π22C-A2+D-B2A+B+C+D2.
α=αa+αp+αs+αg+αm,
σp2=164Nγ2.
σps2=δ64γ2.
δ=σγ21+0.5γ2.
δσdiff2σdiff2=2 τT.
τ=1Cdiff202-+ Cdiff2tdt,
Cdiffτ=αit-αjtαit+τ-αjt+τ=2Ciiτ-Cijτ.
Ciiτ=αitαit+τ,Cijτ=αitαjt+τ.
ΔΓΓ=τTΓ2+τcT1/2,
τc=1Cij20-+ CijtCij-tdt,  ij,i, j=1, 2, 3, 4.
σ20 ms=2σ25 ms-σ210 ms.
Wϕ,VKf=0.0229 r0-5/3f2+102-11/6,
Wϕ,GTf=0.0229 r0-5/3f2+f0-11/6,
0GT=-5.544+1.5880VK+0.00370VK2.
θ0-5/3=114.7λ-2 cos-8/3z  dhCN2hh5/3,
σI2=9.62λ-2  dh CN2hPh,
Ph=11-220df f-8/3 sin2πλhf2×2J1πDfπDf-22J1πDfπDf2,
θ0-5/3=KσI2,
K=11.93 cos-8/3zh05/3Ph0.
CijB, τ=αir, tαjr+B, t+τ,
CijB, τ=CijB-vτ.
Δτij=Bij cosφij-ηv,

Metrics