Abstract

Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NOx, total unburned hydrocarbon, and smoke), together with CO2 and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO2, CO, and NO data showed agreement with intrusive techniques of approximately ±30%. A narrow-band spectroscopic device was used to measure CO2 (with deviations of less than ±10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
    [CrossRef]
  2. G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
    [CrossRef]
  3. “Environmental Protection,” in Aircraft Engine Emissions, 2nd ed. (International Civil Aviation Organization, Document Sales Unit, 1000 Sherbrooke Street West, Suite 400, Montreal, Quebec H3A 2R2, Canada, 1993), Annex 16, Vol. 2.
  4. J. D. Black (Strategic Research Centre, Rolls Royce plc, Sin A-28, P.O. Box 31, Derby DE24 8BJ, UK) is preparing a manuscript to be called “Laser-induced incandescence applied to particle measurement in aeroengine exhausts.”
  5. M. Birk, G. Wagner (Institute for Optoelectronics, German Aerospace Centre, D-82230 Wessling, Germany) are preparing a manuscript to be called “Spectroscopic database of H2O, CO, CO2, NO, and NO2 for infrared measurements of jet aircraft engine exhaust.”
  6. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  7. E. P. Sutton, “The development of slotted working section liners for transonic operation of the RAE Bedford 3ft wind tunnel,” (Aeronautical Research Council, Washington, DC, 1958).
  8. “Procedure for the continuous sampling and measurement of gaseous emissions from aircraft turbine engines,” (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, 1990).
  9. “Procedure for the calculation of basic emission parameters for aircraft turbine engines,” (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, 1982).
  10. “Aircraft gas turbine exhaust smoke measurement,” (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, 1991).
  11. S. P. Girling, C. D. Hurley, “A smoke generator for the calibration of turbine engine smoke sampling and measuring systems,” (Defence Evaluation and Research Agency, Pyestock, UK, January1985).
  12. T. F. Foster, C. W. Wilson, “The validity of nitrogen dioxide measurements made from gas turbine exhausts,” (Defence Evaluation and Research Agency, Pyestock, UK, 1998).
  13. R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).
  14. E. Lindermeir, “Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software,” Ann. Geophys. 12, 417–421 (1994).
    [CrossRef]
  15. M. Hilton, A. H. Lettington, C. W. Wilson, “Gas turbine exhaust emissions monitoring using non-intrusive infrared spectroscopy,” Trans. ASME J. Eng. Gas Turbines Power 120, 514–518 (1998).
    [CrossRef]
  16. J. Heland, K. Schäfer, “Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy,” Appl. Opt. 36, 4922–4931 (1997).
    [CrossRef] [PubMed]
  17. W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Office of Naval Research, Washington, D.C., 1985).
  18. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  19. J. U. White, “Very long optical paths in air,” J. Opt. Soc. Am. 66, 411–416 (1976).
    [CrossRef]
  20. E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
    [CrossRef] [PubMed]
  21. B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley, New York, 1986).
  22. P. R. Griffith, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).
  23. G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).
  24. S. M. Dash, H. S. A. Pergament, “A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (The BOAT Code),” (Aeronautical Research Associates of Princeton, Inc., Princeton, NJ, 1978).
  25. R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Mosebach, H. Bittner, T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
    [CrossRef] [PubMed]
  26. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
    [CrossRef]
  27. L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
    [CrossRef]
  28. J. Heland, FTIR-Emissionsspektroskopie an Flugzeugabgasen (Wissenschafts-Verlag, Dr. W. Maraun, Frankfurt am Main, Germany, 1996).
  29. C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).
  30. E. P. Andreev, I. P. Makarov, F. S. Zavelevich, “Comparison of results of a calculation of the IR radiation of a plume with experimental data obtained in a vacuum chamber,” J. Opt. Technol. 65, 895–897 (1998).
  31. V. S. Matveev, “Priblizhennye predstavlenija koefficienta pogloshchenija i ekvivalentnych shirin linij c Fojgtovskim konturom (Approximative descriptions of the absorption coefficient and the spectral line width with the Voigt Profile),” Zh. Prikl. Spektrosk. Minsk 16, 228–233 (1972).
  32. R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990).
    [CrossRef]
  33. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  34. R. L. Vander Wal and T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999) and references therein.
    [CrossRef]
  35. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  36. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [CrossRef]
  37. B. Mewes, J. M. Seitzmann, “Soot volume fraction and particle size measurements with laser induced incandescence,” Appl. Opt. 36, 709–730 (1997).
    [CrossRef] [PubMed]
  38. C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  39. P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser vaporized soot and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  40. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhausts using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
    [CrossRef]
  41. J. D. Black, S. S. Wiseall, “CARS diagnostics on model gas turbine combustor rigs,” in Conference Proceedings CP-598 AGARD, NATO Advisory Group for Aerospace Research and Development, Propulsion and Energetics Panel Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines, (AGARD, Neuilly-sur-Seine, France, 1998).
  42. L. A. Gross, P. R. Griffith, “Spectroscopic temperature estimates by infrared emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 39, 463–472 (1988).
    [CrossRef]

1999 (1)

1998 (4)

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

M. Hilton, A. H. Lettington, C. W. Wilson, “Gas turbine exhaust emissions monitoring using non-intrusive infrared spectroscopy,” Trans. ASME J. Eng. Gas Turbines Power 120, 514–518 (1998).
[CrossRef]

E. P. Andreev, I. P. Makarov, F. S. Zavelevich, “Comparison of results of a calculation of the IR radiation of a plume with experimental data obtained in a vacuum chamber,” J. Opt. Technol. 65, 895–897 (1998).

1997 (2)

1996 (2)

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhausts using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

1995 (1)

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser vaporized soot and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

1994 (4)

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Mosebach, H. Bittner, T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
[CrossRef] [PubMed]

U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
[CrossRef]

E. Lindermeir, “Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software,” Ann. Geophys. 12, 417–421 (1994).
[CrossRef]

1993 (1)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

1992 (2)

E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

1990 (1)

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990).
[CrossRef]

1988 (1)

L. A. Gross, P. R. Griffith, “Spectroscopic temperature estimates by infrared emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 39, 463–472 (1988).
[CrossRef]

1987 (1)

1976 (1)

1972 (1)

V. S. Matveev, “Priblizhennye predstavlenija koefficienta pogloshchenija i ekvivalentnych shirin linij c Fojgtovskim konturom (Approximative descriptions of the absorption coefficient and the spectral line width with the Voigt Profile),” Zh. Prikl. Spektrosk. Minsk 16, 228–233 (1972).

1942 (1)

Alden, M.

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser vaporized soot and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Andreev, E. P.

E. P. Andreev, I. P. Makarov, F. S. Zavelevich, “Comparison of results of a calculation of the IR radiation of a plume with experimental data obtained in a vacuum chamber,” J. Opt. Technol. 65, 895–897 (1998).

Barbe, A.

Bautzer, W.

Bengtsson, P. E.

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser vaporized soot and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Birk, M.

M. Birk, G. Wagner (Institute for Optoelectronics, German Aerospace Centre, D-82230 Wessling, Germany) are preparing a manuscript to be called “Spectroscopic database of H2O, CO, CO2, NO, and NO2 for infrared measurements of jet aircraft engine exhaust.”

Bishop, G.

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

Bittner, H.

Black, J. D.

J. D. Black (Strategic Research Centre, Rolls Royce plc, Sin A-28, P.O. Box 31, Derby DE24 8BJ, UK) is preparing a manuscript to be called “Laser-induced incandescence applied to particle measurement in aeroengine exhausts.”

J. D. Black, S. S. Wiseall, “CARS diagnostics on model gas turbine combustor rigs,” in Conference Proceedings CP-598 AGARD, NATO Advisory Group for Aerospace Research and Development, Propulsion and Energetics Panel Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines, (AGARD, Neuilly-sur-Seine, France, 1998).

Brasseur, G. P.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Caola, M. J.

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

Case, M. E.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhausts using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Cox, R. A.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Dash, S. M.

S. M. Dash, H. S. A. Pergament, “A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (The BOAT Code),” (Aeronautical Research Associates of Princeton, Inc., Princeton, NJ, 1978).

de Haseth, J. A.

P. R. Griffith, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

Dietl, H.

Eisenmann, T.

Finlayson-Pitts, B. J.

B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley, New York, 1986).

Flaud, J. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Foster, T. F.

T. F. Foster, C. W. Wilson, “The validity of nitrogen dioxide measurements made from gas turbine exhausts,” (Defence Evaluation and Research Agency, Pyestock, UK, 1998).

Freeman, G. N.

C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

Girling, S. P.

S. P. Girling, C. D. Hurley, “A smoke generator for the calibration of turbine engine smoke sampling and measuring systems,” (Defence Evaluation and Research Agency, Pyestock, UK, January1985).

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Goody, R. M.

R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).

Gowen, F. T.

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Griffith, P. R.

L. A. Gross, P. R. Griffith, “Spectroscopic temperature estimates by infrared emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 39, 463–472 (1988).
[CrossRef]

P. R. Griffith, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

Gross, L. A.

L. A. Gross, P. R. Griffith, “Spectroscopic temperature estimates by infrared emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 39, 463–472 (1988).
[CrossRef]

Haschberger, P.

Hauglustaine, D.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Haus, R.

Hawkins, R. L.

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990).
[CrossRef]

Heland, J.

Hilton, M.

M. Hilton, A. H. Lettington, C. W. Wilson, “Gas turbine exhaust emissions monitoring using non-intrusive infrared spectroscopy,” Trans. ASME J. Eng. Gas Turbines Power 120, 514–518 (1998).
[CrossRef]

Hofeldt, D. L.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhausts using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Hurley, C. D.

S. P. Girling, C. D. Hurley, “A smoke generator for the calibration of turbine engine smoke sampling and measuring systems,” (Defence Evaluation and Research Agency, Pyestock, UK, January1985).

Husson, N.

Isaksen, I.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Lee, T. W.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Lelieveld, J.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Lettington, A. H.

M. Hilton, A. H. Lettington, C. W. Wilson, “Gas turbine exhaust emissions monitoring using non-intrusive infrared spectroscopy,” Trans. ASME J. Eng. Gas Turbines Power 120, 514–518 (1998).
[CrossRef]

Lindermeir, E.

E. Lindermeir, “Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software,” Ann. Geophys. 12, 417–421 (1994).
[CrossRef]

E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
[CrossRef] [PubMed]

Lister, D. H.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Ludwig, C. B.

C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).

Makarov, I. P.

E. P. Andreev, I. P. Makarov, F. S. Zavelevich, “Comparison of results of a calculation of the IR radiation of a plume with experimental data obtained in a vacuum chamber,” J. Opt. Technol. 65, 895–897 (1998).

Malathy Devi, V.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Malkmus, W.

C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Matveev, V. S.

V. S. Matveev, “Priblizhennye predstavlenija koefficienta pogloshchenija i ekvivalentnych shirin linij c Fojgtovskim konturom (Approximative descriptions of the absorption coefficient and the spectral line width with the Voigt Profile),” Zh. Prikl. Spektrosk. Minsk 16, 228–233 (1972).

McCann, A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

McCormack, G.

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

Mewes, B.

Mosebach, H.

Naraidoo, M.

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

Ni, T.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Pergament, H. S. A.

S. M. Dash, H. S. A. Pergament, “A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (The BOAT Code),” (Aeronautical Research Associates of Princeton, Inc., Princeton, NJ, 1978).

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Pickett, H. M.

Pitts, J. N.

B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley, New York, 1986).

Poynter, R. L.

Quay, B.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Reed, R.

C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Roberts, N. C.

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

Santoro, R. J.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Sausen, R.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Schäfer, K.

Schroeder, J. W.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

Schumann, U.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
[CrossRef]

Seitzmann, J. M.

Shaddix, C. R.

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Slack, M.

C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).

Smith, K. C.

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Sutton, E. P.

E. P. Sutton, “The development of slotted working section liners for transonic operation of the RAE Bedford 3ft wind tunnel,” (Aeronautical Research Council, Washington, DC, 1958).

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Tank, V.

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Toomer, C. A.

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Vander Wal and T. M. Ticich, R. L.

Wagner, G.

M. Birk, G. Wagner (Institute for Optoelectronics, German Aerospace Centre, D-82230 Wessling, Germany) are preparing a manuscript to be called “Spectroscopic database of H2O, CO, CO2, NO, and NO2 for infrared measurements of jet aircraft engine exhaust.”

Wahner, A.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Walker, J.

C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).

Wattson, R. B.

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

White, J. U.

Wiesen, P.

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Wilson, C. W.

M. Hilton, A. H. Lettington, C. W. Wilson, “Gas turbine exhaust emissions monitoring using non-intrusive infrared spectroscopy,” Trans. ASME J. Eng. Gas Turbines Power 120, 514–518 (1998).
[CrossRef]

T. F. Foster, C. W. Wilson, “The validity of nitrogen dioxide measurements made from gas turbine exhausts,” (Defence Evaluation and Research Agency, Pyestock, UK, 1998).

Wiseall, S. S.

J. D. Black, S. S. Wiseall, “CARS diagnostics on model gas turbine combustor rigs,” in Conference Proceedings CP-598 AGARD, NATO Advisory Group for Aerospace Research and Development, Propulsion and Energetics Panel Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines, (AGARD, Neuilly-sur-Seine, France, 1998).

Yung, Y. L.

R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).

Zavelevich, F. S.

E. P. Andreev, I. P. Makarov, F. S. Zavelevich, “Comparison of results of a calculation of the IR radiation of a plume with experimental data obtained in a vacuum chamber,” J. Opt. Technol. 65, 895–897 (1998).

Aerosol Sci. Technol. (1)

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhausts using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Ann. Geophys. (2)

U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994).
[CrossRef]

E. Lindermeir, “Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software,” Ann. Geophys. 12, 417–421 (1994).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser vaporized soot and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Atmos. Environ. (1)

G. P. Brasseur, R. A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D. H. Lister, R. Sausen, U. Schumann, A. Wahner, P. Wiesen, “European scientific assessment of the atmospheric effects of aircraft emissions,” Atmos. Environ. 32, 2329–2418 (1998).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Combust. Flame (2)

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

J. Mol. Spectrosc. (1)

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Technol. (1)

E. P. Andreev, I. P. Makarov, F. S. Zavelevich, “Comparison of results of a calculation of the IR radiation of a plume with experimental data obtained in a vacuum chamber,” J. Opt. Technol. 65, 895–897 (1998).

J. Quant. Spectrosc. Radiat. Transfer (2)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

L. A. Gross, P. R. Griffith, “Spectroscopic temperature estimates by infrared emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 39, 463–472 (1988).
[CrossRef]

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Trans. ASME J. Eng. Gas Turbines Power (1)

M. Hilton, A. H. Lettington, C. W. Wilson, “Gas turbine exhaust emissions monitoring using non-intrusive infrared spectroscopy,” Trans. ASME J. Eng. Gas Turbines Power 120, 514–518 (1998).
[CrossRef]

Zh. Prikl. Spektrosk. Minsk (1)

V. S. Matveev, “Priblizhennye predstavlenija koefficienta pogloshchenija i ekvivalentnych shirin linij c Fojgtovskim konturom (Approximative descriptions of the absorption coefficient and the spectral line width with the Voigt Profile),” Zh. Prikl. Spektrosk. Minsk 16, 228–233 (1972).

Other (19)

L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, A. McCann, “HITRAN HAWKS and HITEMP: high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 105–111 (1995).
[CrossRef]

J. Heland, FTIR-Emissionsspektroskopie an Flugzeugabgasen (Wissenschafts-Verlag, Dr. W. Maraun, Frankfurt am Main, Germany, 1996).

C. B. Ludwig, G. N. Freeman, W. Malkmus, R. Reed, J. Walker, M. Slack, “Standard Infrared Radiation Model (SIRRM), Vol. 1, Development and Validation,” (Photon Research Associates, La Jolla, Calif., 1981).

B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley, New York, 1986).

P. R. Griffith, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

G. Bishop, M. J. Caola, F. T. Gowen, G. McCormack, M. Naraidoo, N. C. Roberts, C. A. Toomer, SIRUS: A Powerful Infra-Red Prediction Code (Sowerby Research Centre, BAe, Bristol, UK, 1996).

S. M. Dash, H. S. A. Pergament, “A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (The BOAT Code),” (Aeronautical Research Associates of Princeton, Inc., Princeton, NJ, 1978).

W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Office of Naval Research, Washington, D.C., 1985).

“Environmental Protection,” in Aircraft Engine Emissions, 2nd ed. (International Civil Aviation Organization, Document Sales Unit, 1000 Sherbrooke Street West, Suite 400, Montreal, Quebec H3A 2R2, Canada, 1993), Annex 16, Vol. 2.

J. D. Black (Strategic Research Centre, Rolls Royce plc, Sin A-28, P.O. Box 31, Derby DE24 8BJ, UK) is preparing a manuscript to be called “Laser-induced incandescence applied to particle measurement in aeroengine exhausts.”

M. Birk, G. Wagner (Institute for Optoelectronics, German Aerospace Centre, D-82230 Wessling, Germany) are preparing a manuscript to be called “Spectroscopic database of H2O, CO, CO2, NO, and NO2 for infrared measurements of jet aircraft engine exhaust.”

E. P. Sutton, “The development of slotted working section liners for transonic operation of the RAE Bedford 3ft wind tunnel,” (Aeronautical Research Council, Washington, DC, 1958).

“Procedure for the continuous sampling and measurement of gaseous emissions from aircraft turbine engines,” (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, 1990).

“Procedure for the calculation of basic emission parameters for aircraft turbine engines,” (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, 1982).

“Aircraft gas turbine exhaust smoke measurement,” (Society of Automotive Engineers International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, 1991).

S. P. Girling, C. D. Hurley, “A smoke generator for the calibration of turbine engine smoke sampling and measuring systems,” (Defence Evaluation and Research Agency, Pyestock, UK, January1985).

T. F. Foster, C. W. Wilson, “The validity of nitrogen dioxide measurements made from gas turbine exhausts,” (Defence Evaluation and Research Agency, Pyestock, UK, 1998).

R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1986).

J. D. Black, S. S. Wiseall, “CARS diagnostics on model gas turbine combustor rigs,” in Conference Proceedings CP-598 AGARD, NATO Advisory Group for Aerospace Research and Development, Propulsion and Energetics Panel Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines, (AGARD, Neuilly-sur-Seine, France, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Setup for the nonintrusive optical standard E-mode measurement. The radiation of background I 0 is transmitted through ambient air with transmittance τ F and temperature T F , the plume (τ P , T P ), and another ambient air layer (τ F ′, T F ′) before it is reflected by a transfer mirror R′ and transmitted through another ambient air layer (τ F ″, T F ″) to the spectrometer.

Fig. 2
Fig. 2

Principal FTIR measurement setup for multipass reflections with the White mirror system (one field and two opposite mirrors R) in absorption or emission for n = 4 passes through the exhaust gas. For the CA mode, we generated the background radiation I 0 by use of a broadband infrared source (glow bar) and for the CE mode, I 0 is, for example, a black plate at ambient temperature (shutter in front of the glow bar). Ambient air and the plume are characterized by the same quantities as in Fig. 1.

Fig. 3
Fig. 3

FTIR exhaust plume spectra of a commercial gas burner for three different measurement modes (CA and CE modes with n = 28 passes) measured with a commercial FTIR spectrometer at a spectral resolution of 0.2 cm-1. The CE mode, in contrast with the E mode, leads to a significant increase of the emission line intensities.

Fig. 4
Fig. 4

Overall setup of the White mirror system and the transfer optics in the test rig and the switch room.

Fig. 5
Fig. 5

FTIR measurement and simulation of transmission spectra obtained with Eq. (2) as well as the residuum of the calibration in a hot cell filled with CO. There is no visible difference between the spectra. The gas cell transmission measurement was performed with a spectral resolution of 0.2 cm-1 and 100 coadded interferograms. The residuum of the simulated spectrum for a 1500-ppmv mixing ratio and the measured spectrum is approximately ±1%.

Fig. 6
Fig. 6

Data of calibrated radiance measurements with a narrow-band device and simulated synthetic spectra at engine thrusts of 65% NH.

Fig. 7
Fig. 7

Data of calibrated radiance measurements with a narrow-band device and simulated synthetic spectra at engine thrusts of 82.5% NH.

Fig. 8
Fig. 8

Data of calibrated radiance measurements with a narrow-band device and simulated synthetic spectra at engine thrusts of 91% NH.

Fig. 9
Fig. 9

Intrusive measurements of species concentrations and temperature cross sections for (a)–(f) 65% NH, (g)–(l) 82.5% NH, (m)–(r) 91% NH in the mirror plane, depending on its distance from the engine plume centerline.

Fig. 10
Fig. 10

Comparison of CO2 concentrations from measurements with a narrow-band device and from intrusive measurements. The ranges of the day-to-day engine variations are given as error bars of the intrusive measurements.

Fig. 11
Fig. 11

Intrusive and nonintrusive measurement results for CO2. The nonintrusive data are averaged over all the FTIR measurements taken from the switch room. The ranges of the day-to-day engine variations are given as error bars of the intrusive measurements. The large error bars represent the FTIR measurements.

Fig. 12
Fig. 12

Intrusive and nonintrusive measurement results for CO. The nonintrusive data are averaged over all the FTIR measurements taken from the switch room. The ranges of the day-to-day engine variations are given as error bars of the intrusive measurements. The large error bars represent the FTIR measurements.

Fig. 13
Fig. 13

Intrusive and nonintrusive measurement results for NO. The nonintrusive data are averaged over all the FTIR measurements taken from the switch room. The ranges of the day-to-day engine variations are given as error bars of the intrusive measurements. The large error bars represent the FTIR measurements.

Fig. 14
Fig. 14

LII signal counts averaged over the LII images versus total air pressure delivered to the combustors from measurements in the engine test rig. Measurements are shown along six lines of sight in 50-mm steps from the engine centerline to the one edge of the plume. Distances refer to distances from engine plume centerline. The curves are polynomial fits of single measurements.

Tables (2)

Tables Icon

Table 1 Parameters for FTIR Measurments and Algorithms for Data Evaluation

Tables Icon

Table 2 Detection Limits and Necessary Spectral Resolutions for Quantification of Gas Compounds in the DERA TRACE Engine Exhausts with FTIR Techniques

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E=1-τB.
τn=ICA mode-ICE modewith plumeICA mode-ICE modewithout plume.

Metrics