Abstract

We report on the fabrication and subsequent characterization of binary diffractive optical elements (DOE’s) in InP for operation at 1.3 µm. Fresnel lenses of different focal lengths and a DOE that splits and focuses an incident beam into a 1 × 4 array of spots (optical fan-out) were fabricated. We realized the surface reliefs by patterning resist, using electron-beam lithography and etching with a chemically assisted ion beam, which produced well-defined patterns with smooth sidewalls and little if no surface roughness. The measured efficiency for the lenses was 36%. For the fan-out element the efficiency and the uniformity error were 26% and 30%, respectively. Spot sizes as small as 16 µm were measured.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
    [CrossRef]
  2. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
    [CrossRef]
  3. K. Rastani, M. Orenstein, E. Kapon, A. C. Von Lehmen, “Integration of planar Fresnel microlenses with vertical-cavity surface-emitting laser arrays,” Opt. Lett. 16, 919–921 (1991).
    [CrossRef] [PubMed]
  4. H. Martinsson, J. Bengtsson, M. Ghisoni, A. Larsson, “Monolithic integration of vertical cavity surface emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
    [CrossRef]
  5. M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
    [CrossRef]
  6. J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared,” J. Vac. Sci. Technol. B 14, 4096–4099 (1996).
    [CrossRef]
  7. T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion-beam etching using chlorine and argon,” Jpn. J. Appl. Phys. 29, L2449–L2452 (1990).
    [CrossRef]
  8. W. Däschner, M. Larsson, S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995).
    [CrossRef] [PubMed]
  9. J. Bengtsson, N. Eriksson, A. Larsson, “Small-feature-size fan-out kinoform etched in GaAs,” Appl. Opt. 35, 801–805 (1996).
    [CrossRef] [PubMed]
  10. O. S. Heavens, R. W. Ditchburn, Insight into Optics (Wiley, New York, 1991).
  11. C. F. Carlström, G. Landgren, S. Anand, “Low energy ion beam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
    [CrossRef]

1999 (1)

H. Martinsson, J. Bengtsson, M. Ghisoni, A. Larsson, “Monolithic integration of vertical cavity surface emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
[CrossRef]

1998 (1)

C. F. Carlström, G. Landgren, S. Anand, “Low energy ion beam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

1997 (1)

M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
[CrossRef]

1996 (2)

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared,” J. Vac. Sci. Technol. B 14, 4096–4099 (1996).
[CrossRef]

J. Bengtsson, N. Eriksson, A. Larsson, “Small-feature-size fan-out kinoform etched in GaAs,” Appl. Opt. 35, 801–805 (1996).
[CrossRef] [PubMed]

1995 (1)

1992 (1)

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

1991 (1)

1990 (1)

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion-beam etching using chlorine and argon,” Jpn. J. Appl. Phys. 29, L2449–L2452 (1990).
[CrossRef]

Anand, S.

C. F. Carlström, G. Landgren, S. Anand, “Low energy ion beam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

Bengtsson, J.

H. Martinsson, J. Bengtsson, M. Ghisoni, A. Larsson, “Monolithic integration of vertical cavity surface emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
[CrossRef]

M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
[CrossRef]

J. Bengtsson, N. Eriksson, A. Larsson, “Small-feature-size fan-out kinoform etched in GaAs,” Appl. Opt. 35, 801–805 (1996).
[CrossRef] [PubMed]

Carlström, C. F.

C. F. Carlström, G. Landgren, S. Anand, “Low energy ion beam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

Carson, R. F.

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Däschner, W.

Ditchburn, R. W.

O. S. Heavens, R. W. Ditchburn, Insight into Optics (Wiley, New York, 1991).

Du, T. C.

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Eriksson, N.

Ghisoni, M.

H. Martinsson, J. Bengtsson, M. Ghisoni, A. Larsson, “Monolithic integration of vertical cavity surface emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
[CrossRef]

M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
[CrossRef]

Heavens, O. S.

O. S. Heavens, R. W. Ditchburn, Insight into Optics (Wiley, New York, 1991).

Jahns, J.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

Kapon, E.

Kilcoyne, S. P.

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Landgren, G.

C. F. Carlström, G. Landgren, S. Anand, “Low energy ion beam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

Larsson, A.

H. Martinsson, J. Bengtsson, M. Ghisoni, A. Larsson, “Monolithic integration of vertical cavity surface emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
[CrossRef]

M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
[CrossRef]

J. Bengtsson, N. Eriksson, A. Larsson, “Small-feature-size fan-out kinoform etched in GaAs,” Appl. Opt. 35, 801–805 (1996).
[CrossRef] [PubMed]

Larsson, M.

Lear, K. L.

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Lee, S. H.

Martinsson, H.

H. Martinsson, J. Bengtsson, M. Ghisoni, A. Larsson, “Monolithic integration of vertical cavity surface emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
[CrossRef]

M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
[CrossRef]

Morgan, R. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

Nguyen, H. N.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

Nishibe, T.

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion-beam etching using chlorine and argon,” Jpn. J. Appl. Phys. 29, L2449–L2452 (1990).
[CrossRef]

Nunoue, S.

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion-beam etching using chlorine and argon,” Jpn. J. Appl. Phys. 29, L2449–L2452 (1990).
[CrossRef]

Orenstein, M.

Rastani, K.

Schneider, R. P.

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Smith, R. E.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared,” J. Vac. Sci. Technol. B 14, 4096–4099 (1996).
[CrossRef]

Vawter, G. A.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared,” J. Vac. Sci. Technol. B 14, 4096–4099 (1996).
[CrossRef]

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Von Lehmen, A. C.

Vukusic, J. A.

M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
[CrossRef]

Walker, J. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

Walker, S. J.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

Warren, M. E.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared,” J. Vac. Sci. Technol. B 14, 4096–4099 (1996).
[CrossRef]

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Wendt, J. R.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared,” J. Vac. Sci. Technol. B 14, 4096–4099 (1996).
[CrossRef]

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Wong, Y. M.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

Zolper, J. C.

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (2)

H. Martinsson, J. Bengtsson, M. Ghisoni, A. Larsson, “Monolithic integration of vertical cavity surface emitting laser and diffractive optical element for advanced beam shaping,” IEEE Photonics Technol. Lett. 11, 503–505 (1999).
[CrossRef]

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photonics Technol. Lett. 4, 1369–1371 (1992).
[CrossRef]

IEEE Photonics. Technol. Lett. (1)

M. Ghisoni, J. Bengtsson, J. A. Vukusic, H. Martinsson, A. Larsson, “Single and multimode VCSEL’s operating with continuous relief kinoform for focussed spot-array generation,” IEEE Photonics. Technol. Lett. 9, 1466–1468 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (2)

C. F. Carlström, G. Landgren, S. Anand, “Low energy ion beam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared,” J. Vac. Sci. Technol. B 14, 4096–4099 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion-beam etching using chlorine and argon,” Jpn. J. Appl. Phys. 29, L2449–L2452 (1990).
[CrossRef]

Opt. Lett. (1)

Other (2)

O. S. Heavens, R. W. Ditchburn, Insight into Optics (Wiley, New York, 1991).

M. E. Warren, T. C. Du, J. R. Wendt, G. A. Vawter, R. F. Carson, K. L. Lear, S. P. Kilcoyne, R. P. Schneider, J. C. Zolper, “Integration of diffractive lenses with addressable vertical cavity laser arrays,” in Circular-Grating Light-Emitting Sources, S. Najafi, M. Fallahi, N. Peyghambarian, eds., Proc. SPIE2398, 12–20 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated relief pattern for the DOE generating a 1 × 4 spot array. The phase difference between the black and the white areas is π. The black area is etched to a depth of 294 nm.

Fig. 2
Fig. 2

SEM micrographs of etched InP Fresnel lenses. The etch depth is 290 nm. (b) is magnified 19× with respect to (a).

Fig. 3
Fig. 3

SEM micrographs of etched InP DOE. The etch depth is 250 nm. (b) is magnified 6.5× with respect to (a).

Fig. 4
Fig. 4

Schematic picture of the measurement setup used to characterize the Fresnel lenses and the DOE.

Fig. 5
Fig. 5

Diagram showing the profiles of the focused spots generated by the Fresnel lenses, with focal lengths of 1, 2, and 4 mm. Insets show the corresponding spot images.

Fig. 6
Fig. 6

Graph showing the intensity distribution in the image plane 4.1 mm from the optical fan-out DOE.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

zdepth=λ02(nInP - 1)

Metrics