Abstract

A two-mode CO2 laser is used as transmitter in a 10-µm heterodyne Doppler lidar (HDL) to take advantage of a spectral diversity technique, i.e., independent realizations obtained with different spectral components. The objective is to improve the properties (i.e., less variance) of power returns from a hard target. The statistical properties are presented first for a broad-spectrum laser transmitter and then for a two-mode laser transmitter. The experimental results for a cooperative diffuse hard target show that the return signals for a frequency separation Δf = 15 MHz can be decorrelated, depending on the angle of incidence and the target roughness. The experimental results show that the spectral diversity technique improves the performance of the HDL.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
    [CrossRef]
  2. P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
    [CrossRef]
  3. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
    [CrossRef]
  4. R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
    [CrossRef]
  5. R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
    [CrossRef]
  6. R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
    [CrossRef]
  7. R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
    [CrossRef]
  8. P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
    [CrossRef]
  9. G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef] [PubMed]
  10. K. Asai, T. Igarashi, “Interference from differential reflectance of moist topographic targets in CO2 DIAL ozone measurement,” Appl. Opt. 23, 735–739 (1984).
    [CrossRef]
  11. E. E. Uthe, “Airborne CO2 DIAL measurements of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492–2498 (1986).
    [CrossRef]
  12. A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurement in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
    [CrossRef] [PubMed]
  13. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [CrossRef] [PubMed]
  14. G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system,” Appl. Opt. 32, 4534–4551 (1993).
    [CrossRef] [PubMed]
  15. C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J. P. Chiaroni, “CO2 laser-based differential absorption system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6199 (1995).
    [CrossRef] [PubMed]
  16. W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the Nineteenth International Laser Radar Conference (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 565–568.
  17. X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.
  18. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
    [CrossRef]
  19. A. M. Dabas, P. Drobinski, P. H. Flamant, “Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar,” J. Atmos. Oceanic Technol. 15, 407–415 (1998).
    [CrossRef]
  20. X. Favreau, A. Delaval, P. Delville, C. Loth, P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.
  21. R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations (Academic, San Diego, Calif., 1984), p. 143.
  22. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
    [CrossRef] [PubMed]
  23. B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982).
    [CrossRef] [PubMed]
  24. P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–505 (1995).
    [CrossRef] [PubMed]
  25. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 20–53.
  26. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
    [CrossRef] [PubMed]
  27. G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 77–121.
  28. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 626–697.
  29. I. P. Christov, “Generation and propagation of ultrashort pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1991), Vol. 29, pp. 201–291.
  30. P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

1998

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

A. M. Dabas, P. Drobinski, P. H. Flamant, “Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar,” J. Atmos. Oceanic Technol. 15, 407–415 (1998).
[CrossRef]

1997

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

1996

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

1995

1993

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

1991

1990

1989

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

1988

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

1986

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

E. E. Uthe, “Airborne CO2 DIAL measurements of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492–2498 (1986).
[CrossRef]

1984

K. Asai, T. Igarashi, “Interference from differential reflectance of moist topographic targets in CO2 DIAL ozone measurement,” Appl. Opt. 23, 735–739 (1984).
[CrossRef]

1983

1982

1980

Adam, P.

Ancellet, G.

Anlauf, K. G.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Asai, K.

K. Asai, T. Igarashi, “Interference from differential reflectance of moist topographic targets in CO2 DIAL ozone measurement,” Appl. Opt. 23, 735–739 (1984).
[CrossRef]

Banta, R. M.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

Biesenthal, T.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Bottenheim, J. W.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Brewer, W. A.

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the Nineteenth International Laser Radar Conference (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 565–568.

Brown, R. A.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Bruneau, D.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

Carlisle, C. B.

Carr, L. W.

Cazeneuve, H.

Chiaroni, J. P.

Christov, I. P.

I. P. Christov, “Generation and propagation of ultrashort pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1991), Vol. 29, pp. 201–291.

Churnside, J. H.

Cupp, R. E.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Dabas, A.

Dabas, A. M.

A. M. Dabas, P. Drobinski, P. H. Flamant, “Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar,” J. Atmos. Oceanic Technol. 15, 407–415 (1998).
[CrossRef]

X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Delaval, A.

X. Favreau, A. Delaval, P. Delville, C. Loth, P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

Delville, P.

X. Favreau, A. Delaval, P. Delville, C. Loth, P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Doviak, R. J.

R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations (Academic, San Diego, Calif., 1984), p. 143.

Drobinski, P.

A. M. Dabas, P. Drobinski, P. H. Flamant, “Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar,” J. Atmos. Oceanic Technol. 15, 407–415 (1998).
[CrossRef]

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Eberhard, W. L.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Ehret, G.

Farcy, J. C.

P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

Favreau, X.

X. Favreau, A. Delaval, P. Delville, C. Loth, P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Flamant, P. H.

A. M. Dabas, P. Drobinski, P. H. Flamant, “Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar,” J. Atmos. Oceanic Technol. 15, 407–415 (1998).
[CrossRef]

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–505 (1995).
[CrossRef] [PubMed]

X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

X. Favreau, A. Delaval, P. Delville, C. Loth, P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

Frehlich, R. G.

Gallant, A.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 20–53.

Gudiksen, P. H.

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

Hardesty, R. M.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the Nineteenth International Laser Radar Conference (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 565–568.

Healy, K. R.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Igarashi, T.

K. Asai, T. Igarashi, “Interference from differential reflectance of moist topographic targets in CO2 DIAL ozone measurement,” Appl. Opt. 23, 735–739 (1984).
[CrossRef]

Kavaya, M. J.

Kiemle, C.

Lange, R.

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

Le Floch, T.

P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

Levinson, D. H.

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

Loth, C.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

X. Favreau, A. Delaval, P. Delville, C. Loth, P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

McKendry, I. G.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Mégie, G.

Menzies, R. T.

Neff, W. D.

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

Neiman, P. J.

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Olivier, L. D.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

Papayannis, A.

Parry, G.

G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 77–121.

Pelon, J.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurement in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Post, M. J.

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

Renger, W.

Ruffieux, D.

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

Rye, B. J.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982).
[CrossRef] [PubMed]

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the Nineteenth International Laser Radar Conference (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 565–568.

Salamitou, P.

P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–505 (1995).
[CrossRef] [PubMed]

X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Shapiro, M. A.

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Shepson, P. B.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 626–697.

Simmet, G.

Steyn, D. G.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Uthe, E. E.

van der Laan, J. E.

Wiebe, H. A.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Wulfmeyer, V.

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the Nineteenth International Laser Radar Conference (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 565–568.

Yura, H. T.

Zhu, C. J.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Zrnic, D. S.

R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations (Academic, San Diego, Calif., 1984), p. 143.

Appl. Opt.

K. Asai, T. Igarashi, “Interference from differential reflectance of moist topographic targets in CO2 DIAL ozone measurement,” Appl. Opt. 23, 735–739 (1984).
[CrossRef]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982).
[CrossRef] [PubMed]

J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
[CrossRef] [PubMed]

E. E. Uthe, “Airborne CO2 DIAL measurements of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492–2498 (1986).
[CrossRef]

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–505 (1995).
[CrossRef] [PubMed]

C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J. P. Chiaroni, “CO2 laser-based differential absorption system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6199 (1995).
[CrossRef] [PubMed]

A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurement in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

Atmos. Environ.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Boundary-Layer Meteorol.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Bull. Am. Meteorol. Soc.

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

J. Appl. Meteorol.

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

J. Atmos. Oceanic Technol.

A. M. Dabas, P. Drobinski, P. H. Flamant, “Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar,” J. Atmos. Oceanic Technol. 15, 407–415 (1998).
[CrossRef]

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

J. Atmos. Sci.

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

Mon. Weather Rev.

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Theor. Appl. Climatol.

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

Other

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the Nineteenth International Laser Radar Conference (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 565–568.

X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

X. Favreau, A. Delaval, P. Delville, C. Loth, P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations (Academic, San Diego, Calif., 1984), p. 143.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 20–53.

G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 77–121.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 626–697.

I. P. Christov, “Generation and propagation of ultrashort pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1991), Vol. 29, pp. 201–291.

P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Rough surface and the height function.

Fig. 2
Fig. 2

Normalized mutual correlation function, calculated from Eq. (26), versus frequency for three values of incident angle β. σ T = 0.6 m, σLO = 1.7 m, σ h = 10 µm, R = 1.8 km (see Table 1).

Fig. 3
Fig. 3

Normalized mutual correlation function, calculated from Eq. (26), versus frequency for three values of the transmitter laser divergence. β = 45°, σLO = 1.7 m, σ h = 10 µm, R = 1.8 km (see Table 1).

Fig. 4
Fig. 4

Instrumental setup: MCT, mercury cadmium telluride, M’s, mirrors; BS, beam splitter; L, lens.

Fig. 5
Fig. 5

(a) Pulse shape, (b) signal backscattered from the hard diffuse target, (c) pulse spectrum, (d) backscattered signal spectrum.

Fig. 6
Fig. 6

Histogram of the frequency beating (Δf = f 2 - f 1) between the first (f 1) and the second (f 2) modes.

Fig. 7
Fig. 7

(a) multimode pulse spectrum, (b) corresponding backscattered signal spectrum, (c) f 1 mode signal spectrum, (d) f 2 mode signal spectrum.

Fig. 8
Fig. 8

PDF’s for the filtered backscattered signal in the case of a multimode pulse signal: (a) f 1 mode (M = 1.1), (b) f 2 mode (M = 1.1). The number of speckle cells was calculated from Eq. (8) and was used to compute the theoretical PDF’s [see Eq. (7)], plotted as the solid curves.

Fig. 9
Fig. 9

PDF’s for the backscattered signal in the case of a multimode pulse signal (M = 1.45). The number of speckle cells was calculated from Eq. (8) and was used to compute the theoretical PDF [see Eq. (7)], plotted as a solid curve. Thick dashed curve, the theoretical PDF computed with the theoretical maximum number of speckle cells in the case of a two-mode laser transmitter. M = 1 is plotted for comparison.

Tables (1)

Tables Icon

Table 1 Parameters of the Two-mode 10-µm HDL Operated by the Laboratoire de Météorologie Dynamique

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Sk, t=2 i aiUTri, k, tUBPLO*ri,
Sk, t=2 i aiUIri, k, texpjk1+cos βhiUBPLO*ri,
Ik=1T  TtSk, tS*k, tdt,
Ik=4 ii UBPLOriUBPLO*ri1T  Tt×aiai*UIri, k, tUI*ri, k, tdt.
Ik=4 i |UBPLOri|21T  Tt|ai|2|UIri, k, t|2dt.
Ik=4ρ i PLOriPIri, k,
pI=MMIMIM-1ΓMexp-M II
M=I2/σI2.
M= Ikdk2 IkIkdkdk- IkIkdkdk= Ikdk2 IkIk|μk, k|2dkdk= Ikdk2 IkIk|μk, k|2dkdk,
|μk, k|2=IkIkIkIk-1.
σc=c2π- |μΔk|2dΔk,
1M=σI1+I22I1+I22=I12+I22-I12-I22+2I1I2-I1I2I1+I22=I12/M1+I22/M2+2I1I2|μk1, k2|2I1+I22,
I1I2=1T2  T2tSk1, tS*k1, tSk2, tS*k2, tdt=1T2  T2tSk1, tS*k1, tSk2, tS*k2, t+Sk1, tS*k2, tSk2, tS*k1, tdt=I1I2+1T2  T2t|Sk1, t)S*k2, t)2dt.I1I2|μk1,k2|2
Ik  exp-k22W2,
M=2πW exp-k2+k22W2|μk, k|2dkdk.
M=2πW exp-Δk24W2|μΔk|2dΔk.
UIri, k, t=PIk1/2cos βπ σIexp-xi2+yi2 cos2 β2σI2×exp-jk xi2+yi2 cos2 β2Rzi×exp-2jkzi cos β,
UBPLOri, k, t=PLO1/2cos βπ σLOexp-xi2+yi2 cos2 β2σLO2×exp-jk xi2+yi2 cos2 β2Rzi×exp-2jkzi cos β,
PIri, k=PIkcos βπσI2exp-xi2σI2exp-yi2 cos2 βσI2,
PLOri=PLO cos βπσLO2exp-xi2σLO2exp-yi2 cos2 βσLO2.
Ik=4ρ cos βPLOPIkπσLO2+σI2.
1M=PI2k1/M1+PI2k2/M2+2PIk1PIk2|μk1, k2|2PIk1+PIk22.
|μk1, k2|2=4ρPLOPI cos2 βπ2σLO2σI2iexp-xi2σE2×exp-yi2 cos2 βσE2exp-jΔk xi22Rzi×exp-jΔk yi2 cos2 β2Rzi×exp-2jΔkzi cos βexp-jΔkhi1+cos β216ρ2 cos2 βPLO2PIk1PIk2π2σLO2+σI22,
Rzi+hicos β+xi sin β,
exp-2jΔkRiexp-Kxi2exp2jΔkxi sin βterm I×iexp-Kyi2 cos2 βexp2jΔkyi sin βterm II×exp-jΔkhi1+3 cos βterm III,
|μk1, k2|2=1σE41σE4+Δk24R2exp-2 Δk21/σE2sin2 β1/σE4+Δk2/4R2×exp-2 Δk21/σE2tan2 β1/σE4+Δk2/4R2×exp-Δk2σh21+3 cos β2.
1M=PI2k1/MI+PI2k2/M2+2PI21/σE4(1/σE4+Δk2/4R2)×exp-2 Δk21/σE2sin2 β1/σE4+Δk2/4R2×exp-2 Δk21/σE2tan2 β1/σE4+Δk2/4R2×exp-Δk2σh21+3 cos β2PIk1+PIk22.

Metrics