Abstract

We present the design of a planar-integrated optoelectronic vector-matrix multiplier. The inherent parallel-processing potential is fully exploited by optical implementation of multiplications and summations. Planar integration makes the free-space optical system compatible with electronic VLSI technologies. It is composed of phase-only diffractive optical elements, which implement lens and multiple-beam-splitter functions. A demonstrator version of the optical system for a matrix of size 10 × 10 was fabricated on quartz glass by means of multimask lithography and reactive ion etching. It shows low cross talk and good uniformity of the signals.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, A. R. Diaz, L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1–3 (1978).
    [CrossRef] [PubMed]
  2. R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1989).
  3. I. Shariv, A. A. Friesem, “All-optical neural network with inhibitory neurons,” Opt. Lett. 14, 485–487 (1989).
    [CrossRef] [PubMed]
  4. G. Palm, “On associative memory,” Biol. Cybern. 36, 19–31 (1980).
    [CrossRef] [PubMed]
  5. G. Grimm, D. Fey, “An associative memory based on hybrid SEED technology,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 339–342 (1998).
    [CrossRef]
  6. M. Gruber, J. Jahns, S. Sinzinger, “Integrated opto-electronic implementation of a binary associative memory,” in Technical Digest of the 6th Microoptics Conference and the 14th Topical Meeting on Gradient-Index Optical Systems (Noguchi Corporation, Nishi-Tsutsujigaoka, Chofu City, Tokyo, Japan, 1997), pp. 86–89.
  7. H. S. Stone, ed., Introduction to Computer Architecture (Science Research Associates, Chicago, 1975).
  8. P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
    [CrossRef]
  9. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  10. J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
    [CrossRef]
  11. S. Sherr, Electronic Displays (Wiley, New York, 1993).
  12. P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
    [CrossRef]
  13. A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
    [CrossRef]
  14. N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
    [CrossRef]
  15. M. M. Downs, J. Jahns, “Integrated-optical array generator,” Opt. Lett. 15, 769–770 (1990).
    [CrossRef] [PubMed]
  16. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase form image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  17. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [CrossRef] [PubMed]
  18. V. Arrizón, M. Testorf, “Efficiency limit of spatially quantized Fourier array illuminators,” Opt. Lett. 22, 197–199 (1997).
    [CrossRef] [PubMed]

1998

P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[CrossRef]

1997

1996

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

1994

J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
[CrossRef]

1993

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

1990

1989

1982

1980

G. Palm, “On associative memory,” Biol. Cybern. 36, 19–31 (1980).
[CrossRef] [PubMed]

1978

1972

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase form image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Arrizón, V.

Diaz, A. R.

Douglas, M. R.

P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[CrossRef]

Downs, M. M.

Fey, D.

G. Grimm, D. Fey, “An associative memory based on hybrid SEED technology,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 339–342 (1998).
[CrossRef]

Fienup, J. R.

Friesem, A. A.

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase form image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Goodman, J. W.

Grimm, G.

G. Grimm, D. Fey, “An associative memory based on hybrid SEED technology,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 339–342 (1998).
[CrossRef]

Gruber, M.

M. Gruber, J. Jahns, S. Sinzinger, “Integrated opto-electronic implementation of a binary associative memory,” in Technical Digest of the 6th Microoptics Conference and the 14th Topical Meeting on Gradient-Index Optical Systems (Noguchi Corporation, Nishi-Tsutsujigaoka, Chofu City, Tokyo, Japan, 1997), pp. 86–89.

Guilfoyle, P. S.

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

Hecht-Nielsen, R.

R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1989).

Hornbeck, L. J.

P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[CrossRef]

Huang, A.

Jahns, J.

J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
[CrossRef]

M. M. Downs, J. Jahns, “Integrated-optical array generator,” Opt. Lett. 15, 769–770 (1990).
[CrossRef] [PubMed]

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

M. Gruber, J. Jahns, S. Sinzinger, “Integrated opto-electronic implementation of a binary associative memory,” in Technical Digest of the 6th Microoptics Conference and the 14th Topical Meeting on Gradient-Index Optical Systems (Noguchi Corporation, Nishi-Tsutsujigaoka, Chofu City, Tokyo, Japan, 1997), pp. 86–89.

Lentine, A. L.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

McCallum, D. S.

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

Meier, R. E.

P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[CrossRef]

Miller, D. A. B.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

Palm, G.

G. Palm, “On associative memory,” Biol. Cybern. 36, 19–31 (1980).
[CrossRef] [PubMed]

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase form image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Shariv, I.

Sherr, S.

S. Sherr, Electronic Displays (Wiley, New York, 1993).

Sinzinger, S.

M. Gruber, J. Jahns, S. Sinzinger, “Integrated opto-electronic implementation of a binary associative memory,” in Technical Digest of the 6th Microoptics Conference and the 14th Topical Meeting on Gradient-Index Optical Systems (Noguchi Corporation, Nishi-Tsutsujigaoka, Chofu City, Tokyo, Japan, 1997), pp. 86–89.

Streibl, N.

N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

Testorf, M.

van Kessel, P. F.

P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[CrossRef]

Woody, L. M.

Appl. Opt.

Biol. Cybern.

G. Palm, “On associative memory,” Biol. Cybern. 36, 19–31 (1980).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

J. Mod. Opt.

N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
[CrossRef]

Opt. Eng.

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

Opt. Lett.

Optik

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase form image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Proc. IEEE

J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
[CrossRef]

P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[CrossRef]

Other

S. Sherr, Electronic Displays (Wiley, New York, 1993).

R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1989).

G. Grimm, D. Fey, “An associative memory based on hybrid SEED technology,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 339–342 (1998).
[CrossRef]

M. Gruber, J. Jahns, S. Sinzinger, “Integrated opto-electronic implementation of a binary associative memory,” in Technical Digest of the 6th Microoptics Conference and the 14th Topical Meeting on Gradient-Index Optical Systems (Noguchi Corporation, Nishi-Tsutsujigaoka, Chofu City, Tokyo, Japan, 1997), pp. 86–89.

H. S. Stone, ed., Introduction to Computer Architecture (Science Research Associates, Chicago, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic setup of optical VM multiplier composed of discrete components.

Fig. 2
Fig. 2

Schematic setup of planar-integrated optical VM-multiplier.

Fig. 3
Fig. 3

xz and yz cross-sections of optical system for planar-integrated optical VM multiplier.

Fig. 4
Fig. 4

Blueprint for demonstrator system; DOE1 and DOE3 are operated in transmission, all other elements in reflection.

Fig. 5
Fig. 5

Beam characteristics in vicinity of modulator element.

Fig. 6
Fig. 6

Phase-profile of one period of 1 × 10 AI grating, optimized by iterative Fourier transformation algorithm.

Fig. 7
Fig. 7

Calculated power spectrum of 1 × 10 AI grating.

Fig. 8
Fig. 8

Phase profile of DOE2; each of the four grey levels represents one out of four equally spaced discrete phase values.

Fig. 9
Fig. 9

REM image of marginal fraction of DOE2 showing its discrete structure.

Fig. 10
Fig. 10

Photograph of the demonstrator system used for optical experiments; location of uncoated elements DOE1 and DOE3, which are not visible, is marked with circles.

Fig. 11
Fig. 11

Experimental demonstration of fan out: CCD image of plane p 0 with the ten replicas that DOE2 generates from an input signal; in the plot intensities are summed up in the y direction.

Fig. 12
Fig. 12

Experimental demonstration of fan in: CCD image of output area; each spot is superposition of ten equal-intensity signals from modulator area; in the plot intensities are summed up in the y direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

vn=m=1M umWmn with n1,, N.

Metrics