Abstract

We demonstrate a simple all-optical realization of programmable edge enhancement and edge-enhanced correlation using novel photorefractive polymers. We show that the higher non-Bragg order in a two-beam coupling scheme contains the edge enhancement of the object when placed in the path of one of the incident beams. Also, this arrangement provides a scheme for writing joint transform correlation dynamic holograms, which can be read by a third beam. The correlation is edge enhanced, and the correlation peak increases with the applied bias voltage. Numerical results without and with beam fanning are presented. Theoretical predictions are reconciled with experimental results.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gunter, J. P. Huignard, eds., Photorefractive Materials and Their Applications, I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, New York, 1988).
  2. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1864–1849 (1991).
    [CrossRef]
  3. W. E. Moerner, C. A. Walsh, J. C. Scott, R. J. Twieg, “Photorefractivity in doped nonlinear organic polymers,” in Nonlinear Optical Properties of Organic Materials, K. D. Singer, ed., Proc. SPIE1560, 278–289 (1991).
  4. Y. Zhang, Y. P. Cui, P. N. Prasad, “Observation of photorefractivity in a fullerence-doped polymer composite,” Phys. Rev. B 46, 9900–9902 (1992).
    [CrossRef]
  5. Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
    [CrossRef]
  6. S. Ducharme, B. Jones, J. M. Takacs, L. Zhang, “Electric-field stabilization and competition of gratings in a photorefractive polymer,” Opt. Lett. 18, 152–154 (1993).
    [CrossRef] [PubMed]
  7. B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group,” J. Appl. Phys. 74, 3617–3619 (1993).
    [CrossRef]
  8. Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
    [CrossRef]
  9. K. Matsushita, D. Miyazaki, A. Kouchi, “Photorefractive effect in polymer doped with PNP,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 59–62 (1997).
  10. K. Matsushita, P. Banerjee, S. Ozaki, D. Miyazaki, “Multi-wave coupling in a high-gain photorefractive polymer,” Opt. Lett. 24, 593–595 (1999).
    [CrossRef]
  11. A. Grunnet-Jepsen, C. L. Thompson, R. J. Tweig, W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
    [CrossRef]
  12. K. Meerholz, R. Bittner, Y. De Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
    [CrossRef]
  13. B. L. Volodin, B. Kippelen, K. Meerholz, N. Peyghambarian, N. V. Kukhtarev, H. J. Caulfield, “Study of non-Bragg orders in dynamic self-diffraction in a photorefractive polymer,” J. Opt. Soc. Am. B 13, 2261–2267 (1996).
    [CrossRef]
  14. J. Huignard, J. Herriau, “Real-time coherent object edge reconstruction with Bi12SiO20 crystal,” Appl. Opt. 17, 2671–2672 (1978).
    [CrossRef] [PubMed]
  15. J. Feinberg, “Real-time edge enhancement using the photorefractive effect,” Opt. Lett. 5, 330–332 (1980).
    [CrossRef] [PubMed]
  16. Y. Yu, H. Xu, Y. Yuan, K. Xu, “Real-time edge-enhancement using self-pumped phase conjugation in BaTiO3,” Opt. Commun. 79, 19–22 (1990).
    [CrossRef]
  17. H. Xu, K. Ku, L. Jiang, “Mechanisms of edge enhancement for the reconstructed object in ferroelectric crystals,” J. Harbin Instit. Technol. 4, 114–118 (1988).
  18. N. Vainos, R. Eason, “Real-time edge enhancement by active spatial filtering via five-wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
    [CrossRef]
  19. E. Ochoa, J. W. Goodman, L. Hesselink, “Real-time enhancement of defects using BSO,” Opt. Lett. 10, 430–432 (1985).
    [CrossRef] [PubMed]
  20. M. Cronin-Golomb, B. Fischer, J. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
    [CrossRef]
  21. I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
    [CrossRef]
  22. L. Laycock, C. Petts, “Two-dimensional optical image processing for pattern recognition,” GEC J. Res. 1, 127–135 (1983).
  23. L. Laycock, M. McCall, C. Petts, “A compact real-time optical processing system,” GEC J. Res. 2, 82–87 (1984).
  24. H. Liu, “Self-amplified optical pattern-recognition technique,” Appl. Opt. 31, 2568–2575 (1992).
    [CrossRef] [PubMed]
  25. C. Halvorson, B. Kraabel, J. Heeger, B. Volodin, K. Meerholz, N. Peyghambarian, “Optical computing by use of photorefractive polymers,” Opt. Lett. 20, 76–79 (1995).
    [CrossRef]
  26. M. Liang, L. Liu, S. Wu, Z. Wang, “Rotation and scale sensitivities of one-dimensional differential correlation,” Opt. Commun. 75, 219–224 (1990).
    [CrossRef]
  27. M. Liang, L. Liu, S. Wu, Z. Wang, “Comparison of discrimination capabilities of four types of correlation,” Opt. Commun. 75, 225–230 (1990).
    [CrossRef]
  28. M. Liang, L. Liu, S. Wu, Z. Wang, “Discrimination capabilities of a phase-only matched filter made from outline features,” Opt. Commun. 75, 231–234 (1990).
    [CrossRef]
  29. M. Alam, O. Perez, M. Karim, “Preprocessed multiobject joint transform correlation,” Appl. Opt. 32, 3102–3107 (1993).
    [CrossRef] [PubMed]
  30. E. delRe, A. Ciattoni, B. Crosignani, M. Tamburrini, “Approach to space-charge field description in photorefractive crystal,” J. Opt. Soc. Am. B 15, 1469–1475 (1998).
    [CrossRef]
  31. W. Moerner, S. Silence, F. Hache, G. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
    [CrossRef]
  32. J. Feinberg, “A symmetric self-defocusing of an optical beam for photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  33. M. Cronin-Golomb, A. Yariv, “Optical limiters using photorefractive nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
    [CrossRef]
  34. R. Vazquez, F. Vachss, R. Neurgaonkar, M. Ewbank, “Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal,” J. Opt. Soc. Am. B 8, 1932–1941 (1992).
    [CrossRef]
  35. A. Grunnet-Jepsen, C. L. Thompson, W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B 15, 905–913 (1998).
    [CrossRef]
  36. Z. Wang, H. Zhang, C. Cartwright, M. Ding, N. Cook, W. Gillespie, “Edge enhancement by use of moving gratings in a bismuth silicon oxide crystal and its application to optical correlation,” Appl. Opt. 37, 4449–4456 (1998).
    [CrossRef]
  37. S. Zhong, J. Jiang, S. Liu, C. Li, “Binary joint transform correlator based on differential processing of the joint transform power spectrum,” Appl. Opt. 36, 1776–1780 (1997).
    [CrossRef] [PubMed]
  38. B. Vijaya Kumar, L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997–3006 (1990).
    [CrossRef]

1999 (1)

1998 (5)

1997 (1)

1996 (1)

1995 (1)

1994 (3)

W. Moerner, S. Silence, F. Hache, G. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
[CrossRef]

I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
[CrossRef]

1993 (3)

1992 (4)

H. Liu, “Self-amplified optical pattern-recognition technique,” Appl. Opt. 31, 2568–2575 (1992).
[CrossRef] [PubMed]

R. Vazquez, F. Vachss, R. Neurgaonkar, M. Ewbank, “Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal,” J. Opt. Soc. Am. B 8, 1932–1941 (1992).
[CrossRef]

Y. Zhang, Y. P. Cui, P. N. Prasad, “Observation of photorefractivity in a fullerence-doped polymer composite,” Phys. Rev. B 46, 9900–9902 (1992).
[CrossRef]

Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

1991 (1)

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1864–1849 (1991).
[CrossRef]

1990 (5)

Y. Yu, H. Xu, Y. Yuan, K. Xu, “Real-time edge-enhancement using self-pumped phase conjugation in BaTiO3,” Opt. Commun. 79, 19–22 (1990).
[CrossRef]

B. Vijaya Kumar, L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997–3006 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Rotation and scale sensitivities of one-dimensional differential correlation,” Opt. Commun. 75, 219–224 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Comparison of discrimination capabilities of four types of correlation,” Opt. Commun. 75, 225–230 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Discrimination capabilities of a phase-only matched filter made from outline features,” Opt. Commun. 75, 231–234 (1990).
[CrossRef]

1988 (1)

H. Xu, K. Ku, L. Jiang, “Mechanisms of edge enhancement for the reconstructed object in ferroelectric crystals,” J. Harbin Instit. Technol. 4, 114–118 (1988).

1986 (1)

N. Vainos, R. Eason, “Real-time edge enhancement by active spatial filtering via five-wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

1985 (2)

E. Ochoa, J. W. Goodman, L. Hesselink, “Real-time enhancement of defects using BSO,” Opt. Lett. 10, 430–432 (1985).
[CrossRef] [PubMed]

M. Cronin-Golomb, A. Yariv, “Optical limiters using photorefractive nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

1984 (2)

L. Laycock, M. McCall, C. Petts, “A compact real-time optical processing system,” GEC J. Res. 2, 82–87 (1984).

M. Cronin-Golomb, B. Fischer, J. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

1983 (1)

L. Laycock, C. Petts, “Two-dimensional optical image processing for pattern recognition,” GEC J. Res. 1, 127–135 (1983).

1982 (1)

1980 (1)

1978 (1)

Al, B.

I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
[CrossRef]

Alam, M.

Banerjee, P.

Biaggio, I.

I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
[CrossRef]

Bittner, R.

K. Meerholz, R. Bittner, Y. De Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

Bjorklund, G.

Burzynski, R.

Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
[CrossRef]

Cartwright, C.

Casstevens, M. K.

Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
[CrossRef]

Caulfield, H. J.

Ciattoni, A.

Cook, N.

Cronin-Golomb, M.

M. Cronin-Golomb, A. Yariv, “Optical limiters using photorefractive nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Crosignani, B.

Cui, Y. P.

Y. Zhang, Y. P. Cui, P. N. Prasad, “Observation of photorefractivity in a fullerence-doped polymer composite,” Phys. Rev. B 46, 9900–9902 (1992).
[CrossRef]

Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

De Nardin, Y.

K. Meerholz, R. Bittner, Y. De Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

delRe, E.

Ding, M.

Ducharme, S.

S. Ducharme, B. Jones, J. M. Takacs, L. Zhang, “Electric-field stabilization and competition of gratings in a photorefractive polymer,” Opt. Lett. 18, 152–154 (1993).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1864–1849 (1991).
[CrossRef]

Eason, R.

N. Vainos, R. Eason, “Real-time edge enhancement by active spatial filtering via five-wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Ewbank, M.

Feinberg, J.

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Ghosal, S.

Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
[CrossRef]

Gillespie, W.

Goodman, J. W.

Grunnet-Jepsen, A.

Hache, F.

Hall, H. K.

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group,” J. Appl. Phys. 74, 3617–3619 (1993).
[CrossRef]

Halvorson, C.

Hassebrook, L.

Heeger, J.

Hellwarth, R.

I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
[CrossRef]

Herriau, J.

Hesselink, L.

Huignard, J.

Jiang, J.

Jiang, L.

H. Xu, K. Ku, L. Jiang, “Mechanisms of edge enhancement for the reconstructed object in ferroelectric crystals,” J. Harbin Instit. Technol. 4, 114–118 (1988).

Jones, B.

Karim, M.

Kippelen, B.

B. L. Volodin, B. Kippelen, K. Meerholz, N. Peyghambarian, N. V. Kukhtarev, H. J. Caulfield, “Study of non-Bragg orders in dynamic self-diffraction in a photorefractive polymer,” J. Opt. Soc. Am. B 13, 2261–2267 (1996).
[CrossRef]

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group,” J. Appl. Phys. 74, 3617–3619 (1993).
[CrossRef]

Knize, R.

I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
[CrossRef]

Kouchi, A.

K. Matsushita, D. Miyazaki, A. Kouchi, “Photorefractive effect in polymer doped with PNP,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 59–62 (1997).

Kraabel, B.

Ku, K.

H. Xu, K. Ku, L. Jiang, “Mechanisms of edge enhancement for the reconstructed object in ferroelectric crystals,” J. Harbin Instit. Technol. 4, 114–118 (1988).

Kukhtarev, N. V.

Laycock, L.

L. Laycock, M. McCall, C. Petts, “A compact real-time optical processing system,” GEC J. Res. 2, 82–87 (1984).

L. Laycock, C. Petts, “Two-dimensional optical image processing for pattern recognition,” GEC J. Res. 1, 127–135 (1983).

Li, C.

Liang, M.

M. Liang, L. Liu, S. Wu, Z. Wang, “Rotation and scale sensitivities of one-dimensional differential correlation,” Opt. Commun. 75, 219–224 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Comparison of discrimination capabilities of four types of correlation,” Opt. Commun. 75, 225–230 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Discrimination capabilities of a phase-only matched filter made from outline features,” Opt. Commun. 75, 231–234 (1990).
[CrossRef]

Liu, H.

Liu, L.

M. Liang, L. Liu, S. Wu, Z. Wang, “Comparison of discrimination capabilities of four types of correlation,” Opt. Commun. 75, 225–230 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Rotation and scale sensitivities of one-dimensional differential correlation,” Opt. Commun. 75, 219–224 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Discrimination capabilities of a phase-only matched filter made from outline features,” Opt. Commun. 75, 231–234 (1990).
[CrossRef]

Liu, S.

Matsushita, K.

K. Matsushita, P. Banerjee, S. Ozaki, D. Miyazaki, “Multi-wave coupling in a high-gain photorefractive polymer,” Opt. Lett. 24, 593–595 (1999).
[CrossRef]

K. Matsushita, D. Miyazaki, A. Kouchi, “Photorefractive effect in polymer doped with PNP,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 59–62 (1997).

McCall, M.

L. Laycock, M. McCall, C. Petts, “A compact real-time optical processing system,” GEC J. Res. 2, 82–87 (1984).

Meerholz, K.

Miyazaki, D.

K. Matsushita, P. Banerjee, S. Ozaki, D. Miyazaki, “Multi-wave coupling in a high-gain photorefractive polymer,” Opt. Lett. 24, 593–595 (1999).
[CrossRef]

K. Matsushita, D. Miyazaki, A. Kouchi, “Photorefractive effect in polymer doped with PNP,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 59–62 (1997).

Moerner, W.

Moerner, W. E.

A. Grunnet-Jepsen, C. L. Thompson, W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B 15, 905–913 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Tweig, W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1864–1849 (1991).
[CrossRef]

W. E. Moerner, C. A. Walsh, J. C. Scott, R. J. Twieg, “Photorefractivity in doped nonlinear organic polymers,” in Nonlinear Optical Properties of Organic Materials, K. D. Singer, ed., Proc. SPIE1560, 278–289 (1991).

Neurgaonkar, R.

Ochoa, E.

Ozaki, S.

Padias, A. B.

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group,” J. Appl. Phys. 74, 3617–3619 (1993).
[CrossRef]

Partanen, J.

I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
[CrossRef]

Perez, O.

Petts, C.

L. Laycock, M. McCall, C. Petts, “A compact real-time optical processing system,” GEC J. Res. 2, 82–87 (1984).

L. Laycock, C. Petts, “Two-dimensional optical image processing for pattern recognition,” GEC J. Res. 1, 127–135 (1983).

Peyghambarian, N.

Prasad, P. N.

Y. Zhang, Y. P. Cui, P. N. Prasad, “Observation of photorefractivity in a fullerence-doped polymer composite,” Phys. Rev. B 46, 9900–9902 (1992).
[CrossRef]

Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

Schildkraut, J. S.

Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1864–1849 (1991).
[CrossRef]

W. E. Moerner, C. A. Walsh, J. C. Scott, R. J. Twieg, “Photorefractivity in doped nonlinear organic polymers,” in Nonlinear Optical Properties of Organic Materials, K. D. Singer, ed., Proc. SPIE1560, 278–289 (1991).

Silence, S.

Spencer, C. A.

Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
[CrossRef]

Takacs, J. M.

Tamburrini, M.

Tamura, K.

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group,” J. Appl. Phys. 74, 3617–3619 (1993).
[CrossRef]

Thompson, C. L.

Tweig, R. J.

Twieg, R. J.

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1864–1849 (1991).
[CrossRef]

W. E. Moerner, C. A. Walsh, J. C. Scott, R. J. Twieg, “Photorefractivity in doped nonlinear organic polymers,” in Nonlinear Optical Properties of Organic Materials, K. D. Singer, ed., Proc. SPIE1560, 278–289 (1991).

Vachss, F.

Vainos, N.

N. Vainos, R. Eason, “Real-time edge enhancement by active spatial filtering via five-wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Vazquez, R.

Vijaya Kumar, B.

Volodin, B.

Volodin, B. L.

Walsh, C. A.

W. E. Moerner, C. A. Walsh, J. C. Scott, R. J. Twieg, “Photorefractivity in doped nonlinear organic polymers,” in Nonlinear Optical Properties of Organic Materials, K. D. Singer, ed., Proc. SPIE1560, 278–289 (1991).

Wang, Z.

Z. Wang, H. Zhang, C. Cartwright, M. Ding, N. Cook, W. Gillespie, “Edge enhancement by use of moving gratings in a bismuth silicon oxide crystal and its application to optical correlation,” Appl. Opt. 37, 4449–4456 (1998).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Discrimination capabilities of a phase-only matched filter made from outline features,” Opt. Commun. 75, 231–234 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Rotation and scale sensitivities of one-dimensional differential correlation,” Opt. Commun. 75, 219–224 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Comparison of discrimination capabilities of four types of correlation,” Opt. Commun. 75, 225–230 (1990).
[CrossRef]

White, J.

M. Cronin-Golomb, B. Fischer, J. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Williams, D. J.

Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

Wu, S.

M. Liang, L. Liu, S. Wu, Z. Wang, “Discrimination capabilities of a phase-only matched filter made from outline features,” Opt. Commun. 75, 231–234 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Rotation and scale sensitivities of one-dimensional differential correlation,” Opt. Commun. 75, 219–224 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Comparison of discrimination capabilities of four types of correlation,” Opt. Commun. 75, 225–230 (1990).
[CrossRef]

Xu, H.

Y. Yu, H. Xu, Y. Yuan, K. Xu, “Real-time edge-enhancement using self-pumped phase conjugation in BaTiO3,” Opt. Commun. 79, 19–22 (1990).
[CrossRef]

H. Xu, K. Ku, L. Jiang, “Mechanisms of edge enhancement for the reconstructed object in ferroelectric crystals,” J. Harbin Instit. Technol. 4, 114–118 (1988).

Xu, K.

Y. Yu, H. Xu, Y. Yuan, K. Xu, “Real-time edge-enhancement using self-pumped phase conjugation in BaTiO3,” Opt. Commun. 79, 19–22 (1990).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, A. Yariv, “Optical limiters using photorefractive nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Yu, Y.

Y. Yu, H. Xu, Y. Yuan, K. Xu, “Real-time edge-enhancement using self-pumped phase conjugation in BaTiO3,” Opt. Commun. 79, 19–22 (1990).
[CrossRef]

Yuan, Y.

Y. Yu, H. Xu, Y. Yuan, K. Xu, “Real-time edge-enhancement using self-pumped phase conjugation in BaTiO3,” Opt. Commun. 79, 19–22 (1990).
[CrossRef]

Zhang, H.

Zhang, L.

Zhang, Y.

Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
[CrossRef]

Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

Y. Zhang, Y. P. Cui, P. N. Prasad, “Observation of photorefractivity in a fullerence-doped polymer composite,” Phys. Rev. B 46, 9900–9902 (1992).
[CrossRef]

Zhong, S.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, D. J. Williams, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

GEC J. Res. (2)

L. Laycock, C. Petts, “Two-dimensional optical image processing for pattern recognition,” GEC J. Res. 1, 127–135 (1983).

L. Laycock, M. McCall, C. Petts, “A compact real-time optical processing system,” GEC J. Res. 2, 82–87 (1984).

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

J. Appl. Phys. (3)

M. Cronin-Golomb, A. Yariv, “Optical limiters using photorefractive nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group,” J. Appl. Phys. 74, 3617–3619 (1993).
[CrossRef]

Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, “Photorefractive properties of a thiapyrylium-dye-sensitized polymer composite,” J. Appl. Phys. 76, 671–679 (1994).
[CrossRef]

J. Harbin Instit. Technol. (1)

H. Xu, K. Ku, L. Jiang, “Mechanisms of edge enhancement for the reconstructed object in ferroelectric crystals,” J. Harbin Instit. Technol. 4, 114–118 (1988).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (6)

Nature (1)

I. Biaggio, J. Partanen, B. Al, R. Knize, R. Hellwarth, “Optical image processing by an atomic vapor,” Nature 371, 318–320 (1994).
[CrossRef]

Opt. Commun. (6)

M. Liang, L. Liu, S. Wu, Z. Wang, “Rotation and scale sensitivities of one-dimensional differential correlation,” Opt. Commun. 75, 219–224 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Comparison of discrimination capabilities of four types of correlation,” Opt. Commun. 75, 225–230 (1990).
[CrossRef]

M. Liang, L. Liu, S. Wu, Z. Wang, “Discrimination capabilities of a phase-only matched filter made from outline features,” Opt. Commun. 75, 231–234 (1990).
[CrossRef]

Y. Yu, H. Xu, Y. Yuan, K. Xu, “Real-time edge-enhancement using self-pumped phase conjugation in BaTiO3,” Opt. Commun. 79, 19–22 (1990).
[CrossRef]

K. Meerholz, R. Bittner, Y. De Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

N. Vainos, R. Eason, “Real-time edge enhancement by active spatial filtering via five-wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (1)

Y. Zhang, Y. P. Cui, P. N. Prasad, “Observation of photorefractivity in a fullerence-doped polymer composite,” Phys. Rev. B 46, 9900–9902 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1864–1849 (1991).
[CrossRef]

Other (3)

W. E. Moerner, C. A. Walsh, J. C. Scott, R. J. Twieg, “Photorefractivity in doped nonlinear organic polymers,” in Nonlinear Optical Properties of Organic Materials, K. D. Singer, ed., Proc. SPIE1560, 278–289 (1991).

P. Gunter, J. P. Huignard, eds., Photorefractive Materials and Their Applications, I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, New York, 1988).

K. Matsushita, D. Miyazaki, A. Kouchi, “Photorefractive effect in polymer doped with PNP,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, F. T. Yu, S. Yin, eds., Proc. SPIE3137, 59–62 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Chemical structure of molecular components of the photorefractive polymer composites. PNP [(S)-(-)-(5-nitro-2-pyridyl)prolinol], PVK [poly(N-vinylcarbazole)], ECZ (N-ethylcarbazole), and TNF (2-4-7 trinitro-9 fluocnon).

Fig. 2
Fig. 2

Two-wave coupling configuration.

Fig. 3
Fig. 3

Edge-enhancement geometry; E 2 yields the edge-enhanced image.

Fig. 4
Fig. 4

Edge-enhancement metric Φ.

Fig. 5
Fig. 5

Transverse profile before and after edge enhancement at different voltages.

Fig. 6
Fig. 6

Edge-enhancement metric Φ as a function of the applied voltage.

Fig. 7
Fig. 7

Effects of defocusing and beam ratio on Φ.

Fig. 8
Fig. 8

(a) Object. (b) The edge-enhanced image at 1300 V. (c) The edge-enhanced image at 1500 V.

Fig. 9
Fig. 9

TBC configuration with reading beam for performing correlation.

Fig. 10
Fig. 10

Edge-enhanced correlation: (a) transverse profile, (b) autocorrelation of the transverse profile, (c) partially edge-enhanced transverse profile, and (d) autocorrelation of the partially edge-enhanced transverse profile.

Fig. 11
Fig. 11

Output correlation when a bisector beam reads the grating.

Fig. 12
Fig. 12

Different profiles used in the simulation.

Fig. 13
Fig. 13

Autocorrelation dependence on applied voltage.

Fig. 14
Fig. 14

Cross-correlation dependence on applied voltage.

Fig. 15
Fig. 15

Characters used for correlation and cross-correlation experiments.

Fig. 16
Fig. 16

Autocorrelation of A and A at (a) 1000 V and (b) 1300 V. Cross correlation of A and arrows (see Fig. 15) at (c) 1000 V and (d) 1300 V.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

QY1+dYdξ=g,
Y=EstED,  ξ=kDx,  Q=1+IID,  g=JcγqμνEDαn,ED=kBTq kD,  kD2=q2NckBTNN-Nc,αn=N-NcNc,  ID=Ib+Id,
Eξ, ζ=E1ξ, ζ+E-1ξ, ζ+E2ξ, ζ+E-2ξ, ζ,
Eiξ, ζ=Eiζexp-jκiξξ+κiζζ,i=1, -1, 2, -2;
κiξ,ζ=kix,zkD,  kix=K2=-k-ix,  kiz=k-iz,kix2+kiz2=n2k02,  ζ=kDz.
Y=Y0+Y1 exp-jκξ+Y1* expjκξ+Y2 exp-j2κξ+Y2* expj2κξ,
Q=1+Q0+Q1 exp-jκξ+Q1* expjκξ+Q2 exp-j2κξ+Q2* expj2κξ+Q3 exp-j3κξ+Q3* expj3κξ.
Y0=g1+Q0,  Y1-g Q11+Q01+Q0+jκg,Y2-g Q21+Q0+jκg-Q121+Q01+Q0+jκg1+Q0+j2κg,
Q0=i=1,-1,2,-2 Ei2Ib+Id,Q1=E1E-1*+E-1E-2* exp-jΔκζ+E1*E2 expjΔκζIb+Id,Q2=E1E-2* exp-jΔκζ+E-1*E2 expjΔκζIb+Id.
dE1dζ-jβE1Y02+2E-1Y0Y1+Y1*Y2+2E2Y0Y1*+Y1Y2*+E-22Y0Y2+Y12expjΔκζ-f1E1-|β1|IfE1,
dE-1dζ-jβE-1Y02+2E1Y0Y1*+Y1Y2*+2E-2Y0Y1+Y1*Y2+E22Y0Y2*+Y1*2×expjΔκζ-f-1E-1-|β-1|IfE-1,
dE2dζ-jβE2Y02+2E1Y0Y1+Y1*Y2+E-12Y0Y2+Y12exp-jΔκζ,
dE-2dζ-jβE-2Y02+2E-1Y0Y1*+Y1Y2*+E12Y0Y2*+Y1*2exp-jΔκζ,
dIfdζ2f1|E1|2+2f-1|E-1|2+2|β1E1|2+|β-1E-1|2If,
Y0V cosθEDd,  β=nk0kDAED22,  Δκ=K2nk0kD,βi=32I0Y0Ib+Id1+Q01+I0,  fi=0.01βiI0.
PCE=|I0|2J,

Metrics