Abstract

The multibeam parallel joint transform correlator for optical pattern recognition, which was recently proposed by the authors [Appl. Opt. 37, 5408 (1998)], can increase parallelism without accumulating zero-order background level at the first Fourier transform plane. To evaluate the throughput capability, an experimental trial was made, achieving a 67-ms recognition rate per face per channel, which is limited by the response of the optically addressed liquid-crystal spatial light modulator. A general design theory is developed for dense packing of the optical channels for a given spatial light modulator resolution, considering the bandwidth requirement of the target image. Then the condition for submillisecond throughput with state-of-the-art device technology is discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8.
  2. B. Javidi, C. J. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
    [CrossRef] [PubMed]
  3. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 236–2367 (1989).
  4. G. Lu, F. T. S. Yu, “Performance of a phase-transformed input joint transform correlator,” Appl. Opt. 35, 304–313 (1996).
    [CrossRef] [PubMed]
  5. S. Zhong, J. Jiang, S. Liu, C. Li, “Binary joint transform correlator based on differential processing of joint transform power spectrum,” Appl. Opt. 36, 1776–1780 (1997).
    [CrossRef] [PubMed]
  6. R. K. Wang, L. Shang, C. R. Chatwin, “Modified fringe-adjusted joint transform correlation to accommodate noise in the input scene,” Appl. Opt. 35, 286–295 (1996).
    [CrossRef] [PubMed]
  7. B. Javidi, J. Wang, Q. Tang, “Multiple-object binary joint transform correlation using multiple-level threshold crossing,” Appl. Opt. 30, 4234–4244 (1991).
    [CrossRef] [PubMed]
  8. J. Li, Y. Wang, J. Hu, “Experimental investigation of real-time nonlinear joint transform correlator,” Opt. Eng. 33, 3302–3305 (1994).
    [CrossRef]
  9. L. P. Yaroslavsky, E. Maromi, “Nonlinearity optimization in nonlinear joint transform correlators,” Appl. Opt. 36, 4816–4838 (1997).
    [CrossRef] [PubMed]
  10. Q. Zhang, T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).
    [CrossRef]
  11. W. Yu, K. Nakagawa, T. Minemoto, “All-optical subtracted joint transform correlator,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 55–57.
  12. R. Thapliya, H. Koizumi, K. Kodate, T. Kamiya, “Parallel joint transform correlator applied to Devanagari script recognition,” Appl. Opt. 37, 5408–5415 (1998).
    [CrossRef]
  13. K. Kodate, A. Hashimoto, R. Thapliya, “Binary zone plate array for parallel joint transform correlator applied to face recognition,” Appl. Opt. 38, 3060–3067 (1999).
    [CrossRef]
  14. G. Lu, Z. Zhang, S. Wu, F. T. S. Yu, “Implementation of a non-zero-order joint-transform correlator by use of phase-shifting techniques,” Appl. Opt. 36, 470–483 (1997).
    [CrossRef] [PubMed]
  15. D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
    [CrossRef]
  16. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, T. Hara, “Diffraction efficiency analysis of parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994).
    [CrossRef] [PubMed]
  17. For example, Hamamatsu FLC-SLM Model X4601.
  18. G. B. Cohen, R. Pogreb, K. Vinobar, D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
    [CrossRef] [PubMed]
  19. S. L. Lee, “Transport modeling of multiple-quantum-well optically addressed spatial light modulator,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1996).
  20. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
    [CrossRef]
  21. R. Thapliya, “Multi-channel optical recognition system,” Ph.D. dissertation (University of Tokyo, Tokyo, 1999).
  22. For example, Texas Instruments TMS320C6701 ( http://www.ti.com/sc/docs/dsps/products/c6000/index.htm ).

1999 (1)

1998 (1)

1997 (4)

1996 (2)

1994 (2)

1993 (1)

Q. Zhang, T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).
[CrossRef]

1991 (1)

1989 (1)

B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 236–2367 (1989).

1988 (2)

B. Javidi, C. J. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
[CrossRef] [PubMed]

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Chatwin, C. R.

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Chittick, R. C.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Cohen, G. B.

Collings, N.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Davidov, D.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8.

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Hara, T.

Hashimoto, A.

Hu, J.

J. Li, Y. Wang, J. Hu, “Experimental investigation of real-time nonlinear joint transform correlator,” Opt. Eng. 33, 3302–3305 (1994).
[CrossRef]

Javidi, B.

Jiang, J.

Kamiya, T.

Kobayashi, Y.

Kodate, K.

Koizumi, H.

Kuo, C. J.

Latham, S. G.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Lee, S. L.

S. L. Lee, “Transport modeling of multiple-quantum-well optically addressed spatial light modulator,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1996).

Li, C.

Li, J.

J. Li, Y. Wang, J. Hu, “Experimental investigation of real-time nonlinear joint transform correlator,” Opt. Eng. 33, 3302–3305 (1994).
[CrossRef]

Liu, S.

Lu, G.

Maromi, E.

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Minemoto, T.

Q. Zhang, T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).
[CrossRef]

W. Yu, K. Nakagawa, T. Minemoto, “All-optical subtracted joint transform correlator,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 55–57.

Mukohzaka, N.

Nakagawa, K.

W. Yu, K. Nakagawa, T. Minemoto, “All-optical subtracted joint transform correlator,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 55–57.

Pogreb, R.

Powell, M. A.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Powles, C. M. J.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Shang, L.

Sparks, A. P.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Tang, Q.

Thapliya, R.

Toyoda, H.

Vinobar, K.

Wang, J.

Wang, R. K.

Wang, Y.

J. Li, Y. Wang, J. Hu, “Experimental investigation of real-time nonlinear joint transform correlator,” Opt. Eng. 33, 3302–3305 (1994).
[CrossRef]

Weigman, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Williams, D.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Woods, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

Wu, S.

Yaroslavsky, L. P.

Yoshida, N.

Yu, F. T. S.

Yu, W.

W. Yu, K. Nakagawa, T. Minemoto, “All-optical subtracted joint transform correlator,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 55–57.

Zhang, Q.

Q. Zhang, T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).
[CrossRef]

Zhang, Z.

Zhong, S.

Appl. Opt. (12)

B. Javidi, C. J. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
[CrossRef] [PubMed]

B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 236–2367 (1989).

G. Lu, F. T. S. Yu, “Performance of a phase-transformed input joint transform correlator,” Appl. Opt. 35, 304–313 (1996).
[CrossRef] [PubMed]

S. Zhong, J. Jiang, S. Liu, C. Li, “Binary joint transform correlator based on differential processing of joint transform power spectrum,” Appl. Opt. 36, 1776–1780 (1997).
[CrossRef] [PubMed]

R. K. Wang, L. Shang, C. R. Chatwin, “Modified fringe-adjusted joint transform correlation to accommodate noise in the input scene,” Appl. Opt. 35, 286–295 (1996).
[CrossRef] [PubMed]

B. Javidi, J. Wang, Q. Tang, “Multiple-object binary joint transform correlation using multiple-level threshold crossing,” Appl. Opt. 30, 4234–4244 (1991).
[CrossRef] [PubMed]

R. Thapliya, H. Koizumi, K. Kodate, T. Kamiya, “Parallel joint transform correlator applied to Devanagari script recognition,” Appl. Opt. 37, 5408–5415 (1998).
[CrossRef]

K. Kodate, A. Hashimoto, R. Thapliya, “Binary zone plate array for parallel joint transform correlator applied to face recognition,” Appl. Opt. 38, 3060–3067 (1999).
[CrossRef]

G. Lu, Z. Zhang, S. Wu, F. T. S. Yu, “Implementation of a non-zero-order joint-transform correlator by use of phase-shifting techniques,” Appl. Opt. 36, 470–483 (1997).
[CrossRef] [PubMed]

L. P. Yaroslavsky, E. Maromi, “Nonlinearity optimization in nonlinear joint transform correlators,” Appl. Opt. 36, 4816–4838 (1997).
[CrossRef] [PubMed]

N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, T. Hara, “Diffraction efficiency analysis of parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994).
[CrossRef] [PubMed]

G. B. Cohen, R. Pogreb, K. Vinobar, D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigman, T. H. Woods, C. A. Burrus, “Novel hybrid optically bistable switch: the quantum well self-electro-optical effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
[CrossRef]

J. Phys. D (1)

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Q. Zhang, T. Minemoto, “Successful pattern matching with a large number of reference patterns using a joint transform correlator,” Jpn. J. Appl. Phys. 32, 3471–3476 (1993).
[CrossRef]

Opt. Eng. (1)

J. Li, Y. Wang, J. Hu, “Experimental investigation of real-time nonlinear joint transform correlator,” Opt. Eng. 33, 3302–3305 (1994).
[CrossRef]

Other (6)

W. Yu, K. Nakagawa, T. Minemoto, “All-optical subtracted joint transform correlator,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 55–57.

For example, Hamamatsu FLC-SLM Model X4601.

R. Thapliya, “Multi-channel optical recognition system,” Ph.D. dissertation (University of Tokyo, Tokyo, 1999).

For example, Texas Instruments TMS320C6701 ( http://www.ti.com/sc/docs/dsps/products/c6000/index.htm ).

S. L. Lee, “Transport modeling of multiple-quantum-well optically addressed spatial light modulator,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1996).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measurement system with PRA-based JTC. M and N pixels are the image separation and image sizes, respectively.

Fig. 2
Fig. 2

Change of correlation peaks due to change of separation pixel number, M, for (a) N = 25 and (b) N = 10.

Fig. 3
Fig. 3

Change of correlation peaks for N = 25 and signal approximation by tri4(x/4NP e ).

Fig. 4
Fig. 4

Constant behavior of separation index, S k , on the signal peaks expressed by tri k (x/4NP e ).

Fig. 5
Fig. 5

Case when there is (a) interdiffraction order overlap and (b) nonoverlap; (c) fluctuations of normalized outcome intensity, O m (k′), for k′(=9) channels when the normalized lens separation, m, changes for L e /P e = 0.84 and P e = 33 µm. Note the presence of both destructive and constructive interferences.

Fig. 6
Fig. 6

(a) Seven-channel arrangement with given interchannel distances; (b) tabulation of O m (k′) with respect to the normalized lens separation, m; (c) real arrangement of lens array layout.

Tables (2)

Tables Icon

Table 1 Comparison of OSLM’sa

Tables Icon

Table 2 Performance Estimation of Multichannel PJTC

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

fESLMx=rectxM+NPerectxLe n=- δx-nPerx-MPe2+sx+MPe2,
FJTC2πλf1 u2R2πλf1 u2+S2πλf1 u2+2R*2πλf1 uS2πλf1 ucos2πλf1 MPeu,
|FJPSu|2=Le2M+N2Pe2 sinc2πM+NPeλf1 u sinc2πLeλf1 un=- δu-λf1Pe n FJTC2πλf1 u2.
cf2f1 x2rf2f1 x  rf2f1 x+sf2f1 x  sf2f1 x+rf2f1x±MPe  sf2f1x±MPe2,
cox=K Po24sinc2πPo2λf2 xtri2x2M+NPef2/f1×tri2x2Lef2/f1  cf2f1 x2,
rx=sx=rectxNPe.
cox=sinc2πPo2λf2 xtri2x2M+NPe2 tri2x4NPe+tri2x4NPe  δx±MPe.
FJTC2πλf1 u2=rectu2λf1ωc.
|FJPSu|2=sinc2πLeλf1 un=- δu-λf1Pe n  rect2u2λf1ωc.
Csmλf1/Pe,
Omk=k=-Q/2k=Q/2-λf1ωc-kCsλf1ωc-kCs Fu-kCsdu2,
Cs2D,
D=N+Mth2+N21/2Pe.
m2N+Mth2+N2Pe21/2λf1.
f1M+NPePoλ.
fsizex=rectxM+NPe.
|Fsizeu|2=sinc2πM+NPeλf1 u.
l=2 λf1M+NPe.
l2Po.
f1M+NPePoλ.

Metrics