Abstract

We experimentally demonstrate the adding, dropping, and passing through of 100-Gbit/s word packets in a looped-back all-optical time-division-multiplexed (TDM) access node. Packets are routed with a 17-dB contrast ratio and demultiplexed with a 20-dB contrast ratio. This node uses short 100-Gbit/s words to demonstrate its potential to process data packets from multiple sources and to perform packet switching in a multinode ring network configuration. The ability to tolerate timing jitter as well as varying input signal characteristics is essential to an all-optical access node in a multinode network. For 2-ps input pulses, the header processor has a timing window of ∼5 ps, and the demultiplexer has a timing window of ∼5.5 ps. This allows for tolerance to bit-to-bit timing jitters or to an increase in the pulse width of as much as 3 ps. Packet-to-packet timing jitter is detected and compensated by the technique used to synchronize the local source to each packet. The key enabling technologies of an all-optical TDM packet add–drop multiplexer are discussed, including an erbium-doped fiber laser, a nonlinear optical loop mirror logic gate, self-synchronization to incoming packets with a fast-saturation/slow-recovery gain element followed by an intensity discriminator, a two-wavelength nonlinear optical loop mirror demultiplexer, and synchronization of new packets to the network packet rate with a phase-locked loop. The local source is automatically synchronized to the incoming packet, because it uses an extracted pulse from the packet, which has a contrast ratio of >20 dB to the rest of the packet. Finally, new packets are added by use of a local laser and a synchronization method, which gives a timing jitter of ∼1 ps. Using a statistical method of measuring Q value with picosecond resolution, we show that a header processor with two cascaded logic gates has a Q value of 7.1 with a 95% confidence level.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascadability and functionality of all-optical low-birefringent nonlinear optical loop mirror: experimental demonstration

K. H. Ahn, X. D. Cao, Y. Liang, B. C. Barnett, S. Chaikamnerd, and M. N. Islam
J. Opt. Soc. Am. B 14(5) 1228-1236 (1997)

Ultrafast photonic packet switching with optical control

Ivan Glesk, Koo I. Kang, and Paul R. Prucnal
Opt. Express 1(5) 126-132 (1997)

All-optical packet routing scheme for optical label-swapping networks

R. Clavero, J. M. Martínez, F. Ramos, and J. Martí
Opt. Express 12(18) 4326-4332 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription