Abstract

We present a detailed experimental study concerning quantitative optical property reconstruction of heterogeneous turbid media by use of absolute dc data only. We performed experiments by using tissuelike phantoms in both single-target and multitarget configurations in which variations in target size and optical contrast with the background were explored. Our results show that both scattering and absorption images can be reconstructed quantitatively by use of dc data only, whereas it was impossible to obtain such quantitative information in previously reported studies. We believe that this improvement is primarily a result of the realization of a novel data preprocessing/optimization scheme for accurately determining several critical parameters needed for reconstruction. The use of this data preprocessing/optimization scheme also eliminates the calibration reference measurement previously required for reconstruction. Experimental confirmation of this scheme is given in detail.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Tromberg, A. Yodh, E. Sevick-Muraca, D. Pine, “Diffusing photons in turbid media: introduction,” Appl. Opt. 36, 9 (1997).
    [CrossRef]
  2. A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, “Diffusing photons in turbid media: introduction,” J. Opt. Soc. Am. A 14, 136 (1997).
  3. B. W. Pogue, “Diffusion optical tomography: introduction,” Opt. Express 4, 1 (1999), http://epubs.osa.org/opticsexpress .
    [CrossRef]
  4. R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
    [CrossRef]
  5. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
    [CrossRef]
  6. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef] [PubMed]
  7. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
    [CrossRef] [PubMed]
  8. H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://epubs.osa.org/opticsexpress .
    [CrossRef]
  9. W. Cai, S. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237–4246 (1999).
    [CrossRef]
  10. S. B. Colak, D. Papaioannou, G. tHooft, M. vander Mark, H. Schomberg, J. Paasschens, J. Melissen, N. van Asten, “Tomographic image reconstruction from optical projections in light diffusing media,” Appl. Opt. 36, 180–213 (1997).
    [CrossRef] [PubMed]
  11. S. A. Walker, S. Fantini, E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36, 170–179 (1997).
    [CrossRef] [PubMed]
  12. B. W. Pogue, T. McBride, J. Prewitt, U. Osterberg, K. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  13. C. L. Matson, H. Liu, “Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model,” J. Opt. Soc. Am. A 16, 455–466 (1999).
    [CrossRef]
  14. J. Scotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
    [CrossRef]
  15. X. Cheng, D. Boas, “Diffuse optical reflection tomography with continuous-wave illumination,” Opt. Express 3, 118–123 (1998), http://epubs.osa.org/opticsexpress .
    [CrossRef]
  16. M. J. Eppstein, D. Dougherty, T. Troy, E. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
    [CrossRef]
  17. J. C. Ye, K. Webb, R. Millane, T. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999).
    [CrossRef]
  18. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).
    [CrossRef] [PubMed]
  19. H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  20. H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
    [CrossRef] [PubMed]
  21. H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
    [CrossRef] [PubMed]
  22. H. Jiang, K. Paulsen, U. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
    [CrossRef] [PubMed]
  23. H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissuelike phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
    [CrossRef] [PubMed]
  24. R. Kaskell, L. Svaasand, T. Tsay, T. Feng, M. McAdams, B. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  25. N. Iftimia, H. Jiang, “Development of a combined optical and fluorescence imaging system in frequency domain for breast cancer detection,” in Biomedical Topical Meetings, Postconference Digest, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 383–385.

1999

1998

X. Cheng, D. Boas, “Diffuse optical reflection tomography with continuous-wave illumination,” Opt. Express 3, 118–123 (1998), http://epubs.osa.org/opticsexpress .
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissuelike phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

1997

1996

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[CrossRef] [PubMed]

1995

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

1994

Alfano, R.

Alrubaiee, M.

Aronson, R.

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

Arridge, S. R.

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

Barbour, R. L.

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

Barbour, S.

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

Boas, D.

Boas, D. A.

Cai, W.

Chance, B.

Chang, J.

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

Cheng, X.

Colak, S. B.

Dougherty, D.

Downar, T.

Eppstein, M. J.

Fantini, S.

Feng, T.

Gayen, S.

Graber, H.

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

Gratton, E.

Iftimia, N.

N. Iftimia, H. Jiang, “Development of a combined optical and fluorescence imaging system in frequency domain for breast cancer detection,” in Biomedical Topical Meetings, Postconference Digest, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 383–385.

Jiang, H.

H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999), http://epubs.osa.org/opticsexpress .
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissuelike phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[CrossRef] [PubMed]

N. Iftimia, H. Jiang, “Development of a combined optical and fluorescence imaging system in frequency domain for breast cancer detection,” in Biomedical Topical Meetings, Postconference Digest, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 383–385.

Kaskell, R.

Koo, P.

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

Lax, M.

Liu, H.

Matson, C. L.

McAdams, M.

McBride, T.

Melissen, J.

Millane, R.

O’Leary, M. A.

Osterberg, U.

B. W. Pogue, T. McBride, J. Prewitt, U. Osterberg, K. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissuelike phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Osterberg, U. L.

Paasschens, J.

Papaioannou, D.

Patterson, M.

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissuelike phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Patterson, M. S.

Paulsen, K.

B. W. Pogue, T. McBride, J. Prewitt, U. Osterberg, K. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissuelike phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Paulsen, K. D.

Pine, D.

B. Tromberg, A. Yodh, E. Sevick-Muraca, D. Pine, “Diffusing photons in turbid media: introduction,” Appl. Opt. 36, 9 (1997).
[CrossRef]

A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, “Diffusing photons in turbid media: introduction,” J. Opt. Soc. Am. A 14, 136 (1997).

Pogue, B.

Pogue, B. W.

Prewitt, J.

Schomberg, H.

Schweiger, M.

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

Scotland, J.

Sevick-Muraca, E.

Svaasand, L.

tHooft, G.

Tromberg, B.

Troy, T.

Tsay, T.

van Asten, N.

vander Mark, M.

Walker, S. A.

Webb, K.

Xu, M.

Ye, J. C.

Yodh, A.

B. Tromberg, A. Yodh, E. Sevick-Muraca, D. Pine, “Diffusing photons in turbid media: introduction,” Appl. Opt. 36, 9 (1997).
[CrossRef]

A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, “Diffusing photons in turbid media: introduction,” J. Opt. Soc. Am. A 14, 136 (1997).

Yodh, A. G.

Zevallos, M.

Appl. Opt.

IEEE Comput. Sci. Eng.

R. L. Barbour, H. Graber, J. Chang, S. Barbour, P. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite-element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. London Ser. B

S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997).
[CrossRef]

Phys. Med. Biol.

H. Jiang, K. Paulsen, U. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissuelike phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

Other

N. Iftimia, H. Jiang, “Development of a combined optical and fluorescence imaging system in frequency domain for breast cancer detection,” in Biomedical Topical Meetings, Postconference Digest, Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 383–385.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the experimental setup.

Fig. 2
Fig. 2

(a) Three-dimensional plot of the X 2 error versus the BC coefficient α and absorption coefficient μ a . (b) X 2 error versus the BC coefficient α at a different absorption coefficient. (c) X 2 error versus source strength. (d) Reconstructed μ a image. (e) Target/background geometry and reconstructed profile of μ a along the cut-line, AB. In this case a 15-mm single target with μ s ′ = 1.0/mm and μ a = 0.020/mm was embedded in a background with μ s ′ = 1.0/mm and μ a = 0.0005/mm.

Fig. 3
Fig. 3

(a) X 2 error versus the BC coefficient α at a different absorption coefficient. (b) Reconstructed μ a image and profile along the cut-line, AB. (c) X 2 error versus the BC coefficient α at a different absorption coefficient. (d) Reconstructed μ a image and profile along the cut-line, AB. The background optical properties for these two cases are μ s ′ = 1.0/mm and μ a = 0.0005/mm. The optical properties of the 15-mm target are μ s ′ = 1.0/mm and μ a = 0.015/mm for (a) and (b) and μ s ′ = 1.0/mm and μ a = 0.035/mm for (c) and (d), respectively.

Fig. 4
Fig. 4

Reconstructed μ s ′ and μ a images and their profiles along the cut-line, AB, for a 4-mm target that was embedded in the background with μ s ′ = 1.0/mm and μ a = 0.0005/mm. The target optical properties were μ s ′ = 1.25/mm and μ a = 0.040/mm.

Fig. 5
Fig. 5

Reconstructed μ s ′ and μ a images and their profiles along the cut-line, AB, for two differently sized (6- and 8-mm) targets that were embedded in the background with μ s ′ = 1.0/mm and μ a = 0.0005/mm. The left 6-mm target was μ s ′ = 1.0/mm and μ a = 0.030/mm, and the right 8-mm target was μ s ′ = 1.0/mm and μ a = 0.050/mm.

Fig. 6
Fig. 6

Reconstructed μ s ′ and μ a images and their profiles along the cut-line, AB, for a 10-mm target that was embedded in the background with μ s ′ = 1.0/mm and μ a = 0.0050/mm. The target optical properties were μ s ′ = 1.5/mm and μ a = 0.020/mm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

·DrΦr-μarΦr=-Sr,
-DΦ·nˆ=αΦ,
AΦ=b,
AΦχ=bχ-AχΦ,
JTJ+λIΔχ=JTΦm-Φc,
X2=i-1MΦim-Φ˜ic2,

Metrics