Abstract

Knowledge of the hardness of abrasive particles that are used in polishing is a key to the fundamental understanding of the mechanisms of material removal. The magnetorheological-finishing process uses both magnetic and nonmagnetic abrasive particles during polishing. The nanohardnesses of the micrometer-sized magnetic carbonyl iron and nonmagnetic abrasive particles have been measured successfully by use of novel, to our knowledge, sample-preparation and nanoindentation techniques. Some of the results reported compare favorably with existing microhardness data found in the literature, whereas other results are new.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. A. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1997), pp. 251–274.
  2. The Zygo Model New View 100, a white-light interferometer with a 20× Mirau objective, was obtained from Zygo Corporation, Laurel Brook Rd., Middlefield, Conn. 06455.
  3. S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).
  4. T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), pp. 92–98.
  5. A. Kaller, “Properties of polishing media for precision optics,” Glass Sci. Technol. 71, 174–183 (1998).
  6. A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
    [CrossRef]
  7. R. Steinitz, “The micro-hardness tester—a new tool in powder metallurgy,” Met. Alloys 17, 1183–1187 (1943).
  8. Nano Instruments, Inc., Model Nano IIs, Version 2.2 and accompanying operating instructions (Nano Instruments, Inc., 1001 Larson Dr., Oak Ridge, Tenn. 37830, 1996), p. 7.
  9. W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).
    [CrossRef]
  10. G. M. Pharr, W. C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” Mater. Res. Bull. 17, 28–33 (1992).
  11. J. C. Hay, G. M. Pharr, “Critical issues in measuring the mechanical properties of hard films on soft substrates by nanoindentation techniques,” in Thin Films—Stresses and Mechanical Properties VII, R. C. Cammarata, M. Nastasi, E. P. Busso, W. C. Oliver, eds. (Materials Research Society, Warrendale, Pa., 1998), Vol. 505, pp. 65–70.
  12. A 16–18-µm wire-mesh sieve was obtained from Newark Wire Cloth Company, 351 Verona Dr., Newark, N.J. 07104.
  13. Samples with dimensions of 2.54 cm × 1.27 cm × 0.64 cm were made from material provided by Schott Glass Technologies, 400 York Ave., Duryea, Pa. 18642.
  14. Samarium–cobalt magnets (2.54 cm × 2.54 cm × 1.08 cm) were purchased from McMaster-Carr Supply Company, 600 County Line Road, Elmhurst, Ill. 60126. The magnets supply a field intensity of approximately 2.5 kG in a direction perpendicular to the surface of the magnet.
  15. 2-Ton Clear Epoxy was obtained from ITW Devcon, 30 Endicott St., Danvers, Mass. 01923.
  16. Kapton is a polyamide film provided by DuPont, 1007 Market St., Wellington, Del. 19898. We used type HV300. Teflon films have also been used.
  17. Y. Graselli, G. Bossis, E. Lemaire, “Field-induced structure in magnetorheological suspensions,” Prog. Colloid Polym. Sci. 93, 175–177 (1993).
  18. Microgrit Micro Abrasives Corp., 720 Southampton Rd., Westfield, Mass. 01086.
  19. R. E. Parks, R. E. Sumner, J. T. Appels, “Observations on the polishing of metals,” Opt. Eng. 16, 332–337 (1977).
    [CrossRef]
  20. The load was measured with the I-Scan pressure-measurement system from Tekscan, Inc., Boston, Mass. We used a Model 5051 pressure film with a maximum allowable load of 345 kPa (50 psi).
  21. J. H. Rhodes, Universal Photonic, Inc., 495 W. John St., Hicksville, N.Y. 11801, provided the No. FJ0202 felt lap.
  22. The Olympus Model VANOX-T AH-2 optical microscope, No. 501008, is made by Olympus Optical Co., Ltd., 22-2, Nishishinjuku 1-Chome, Shinjuku-ka, Tokyo, Japan.
  23. Measurements were made by use of the Form Talysurf mechanical profilometer (Taylor Hobson, New Star Rd., Thurmaston Lane, Leicester LE4 7JQ, UK). The device has a 60-mm stylus-arm length and a 2-µm-radius tip.
  24. Buehler, Ltd., 41 Wakegan Rd., Lake Bluff, Ill. 60044.
  25. The SEM was a LEO Model 982 field emission microscope (LEO is a Zeiss-Leica company).
  26. American Society for Testing and Materials, “E384–89 (1997)e2 standard test method for microhardness of materials,” in Metals Test Methods and Analytical Procedures, annual book of ASTM standards (American Society for Testing and Materials, West Conshohocken, Pa., 1999), Vol. 3.01, p. 393.
  27. I. N. Sneddon, Fourier Transforms, 1st ed. (McGraw-Hill, New York, 1951), Sec. 52.5.
  28. A. Krell, P. Blank, E. Wagner, G. Bartels, “Advances in the grinding efficiency of sintered alumina abrasives,” J. Am. Ceram. Soc. 79, 763–769 (1996).
    [CrossRef]
  29. J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, D. Golini, “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 4448–4462 (1996).
    [CrossRef] [PubMed]
  30. T. Fang, “Near-surface mechanical properties of optical materials in deterministic microgrinding,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1997), Chap. 3.
  31. K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, “Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals,” J. Mater. Res. 14, 3973–3982 (1999).
    [CrossRef]
  32. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
    [CrossRef]
  33. J. H. Westbrook, “Hardness–temperature characteristics of some simple glasses,” Phys. Chem. Glasses 1, 32–36 (1960).
  34. D. Tabor, “Moh’s hardness scale—a physical interpretation,” Proc. Phys. Soc. London Sect. B 67, 249–257 (1954).
    [CrossRef]
  35. W. D. Callister, Materials Science and Engineering, 2nd ed. (Wiley, New York, 1991), pp. 131–141.
  36. S. Ramarajan, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, “Hardness of submicrometre abrasive particles and polish rate measurements,” Surf. Eng. 15, 324–328 (1999).
    [CrossRef]
  37. L. B. Pfeil, “The nature, properties, and applications of carbonyl-iron powder,” in Proceedings of the Symposium on Powder Metallurgy (The Iron and Steel Institute, Grosvenor Gardens, London, 1947), Special Rep. 38, pp. 47–51.
  38. F. L. Ebenhoech, “Carbonyl iron powder: production, properties, and applications,” Prog. Powder Metall. 42, 133–140 (1986).
  39. J. E. Japka, “Microstructure and properties of carbonyl iron powder,” J. Met. 40, 18–21 (1988).
  40. G. Boehm, “Properties and novel applications of ferrous carboxylate powders,” Fachber. Huetten. Metall. 20, 146–152 (1982).
  41. H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993), Chap. 3.
  42. K. Okuyama, Y. Kousaka, “Hardness of particles,” in Powder Technology Handbook, K. Iinoya, K. Gotoh, K. Higashitani, eds. (Marcel Dekker, New York, 1991), pp. 57–91.
  43. J. N. Brecker, R. Komanduri, M. C. Shaw, “Evaluation of unbonded abrasive grains,” Ann. CIRP 22, 219–225 (1973).
  44. G. K. Nathan, W. J. D. Jones, “Influence of the hardness of abrasives on the abrasive wear of metals,” Proc. Inst. Mech. Eng. 181, 215–221 (1966–1967).
  45. K. Nassau, “Cubic zirconia: an update,” Lapidary J. 35, 1194–1200 (1981).
  46. C. A. West, “Ceria for glass polishing,” Can. Chem. Process Ind. XXVII, 3–7 (1944).
  47. Corning glass 7940 was provided by Corning, Inc., 1 Riverfront Plaza, Corning, N.Y. 14831.
  48. LHG8 glass was provided by Hoya Corp., 3400 Edison Way, Fremont, Calif. 94538.
  49. KDP was provided by Cleveland Crystals, Inc., 19306 Redwood Rd., Cleveland, Oh. 44110. Indents were made on a fractured surface (i.e., a type II cut).
  50. BASF Corp., 3000 Continental Dr. North, Mt. Olive, N.J. 07828.
  51. ISP International, 1361 Alps Rd., Wayne, N.J. 07470.
  52. Novamet, 681 Lawlins Rd., Wyckoff, N.J. 07481.
  53. A. Friederang, BASF Corp., 3000 Continental Dr. North, Mt. Olive, N.J. 07828 (personal communication, 1998).
  54. Exolon-Esk, 1000 E. Niagara St., Tonawanda, N.Y. 14151.
  55. I Zirconia, batch 1502792, was provided courtesy of Saint Gobain/Norton Industrial Ceramics Corp., 1 New Bond St., Worcester, Mass. 01606.
  56. The 1.0-µm C alumina polishing compound was provided by Praxair Surface Technologies, 1500 Polco St., Indianapolis, Ind. 46224.
  57. Ferro Electronic Materials Division, Ferro Corp., 1789 Transelco Dr., Penn Yan, N.Y. 14527.
  58. C. R. Brooks, Heat Treatment of Ferrous Alloys (Hemisphere, Washington, D.C., 1979).
  59. T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
    [CrossRef]
  60. J. D. Verhoeven, Fundamentals of Physical Metallurgy (Wiley, New York, 1975), Chaps. 11 and 14.
  61. J. C. Li, Materials Science Program, University of Rochester, River Station, Rochester, N.Y. 14627 (personal communication, 1998).
  62. J. Knapp, Praxair Surface Technologies, 1500 Polco St., Indianapolis, Ind. 46224 (personal communication, 1999).
  63. D. Zagari, Ferro Electronic Materials Division, Ferro Corp., 1789 Transelco Dr., Penn Yan, N.Y. 14527 (personal communication, 1999).
  64. A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (MRF) of glass,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 2000), Chap. 5.

1999

K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, “Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals,” J. Mater. Res. 14, 3973–3982 (1999).
[CrossRef]

S. Ramarajan, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, “Hardness of submicrometre abrasive particles and polish rate measurements,” Surf. Eng. 15, 324–328 (1999).
[CrossRef]

1998

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
[CrossRef]

A. Kaller, “Properties of polishing media for precision optics,” Glass Sci. Technol. 71, 174–183 (1998).

1996

A. Krell, P. Blank, E. Wagner, G. Bartels, “Advances in the grinding efficiency of sintered alumina abrasives,” J. Am. Ceram. Soc. 79, 763–769 (1996).
[CrossRef]

J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, D. Golini, “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 4448–4462 (1996).
[CrossRef] [PubMed]

1993

Y. Graselli, G. Bossis, E. Lemaire, “Field-induced structure in magnetorheological suspensions,” Prog. Colloid Polym. Sci. 93, 175–177 (1993).

1992

W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).
[CrossRef]

G. M. Pharr, W. C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” Mater. Res. Bull. 17, 28–33 (1992).

T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
[CrossRef]

1988

J. E. Japka, “Microstructure and properties of carbonyl iron powder,” J. Met. 40, 18–21 (1988).

1986

F. L. Ebenhoech, “Carbonyl iron powder: production, properties, and applications,” Prog. Powder Metall. 42, 133–140 (1986).

1982

G. Boehm, “Properties and novel applications of ferrous carboxylate powders,” Fachber. Huetten. Metall. 20, 146–152 (1982).

1981

K. Nassau, “Cubic zirconia: an update,” Lapidary J. 35, 1194–1200 (1981).

1977

R. E. Parks, R. E. Sumner, J. T. Appels, “Observations on the polishing of metals,” Opt. Eng. 16, 332–337 (1977).
[CrossRef]

1973

J. N. Brecker, R. Komanduri, M. C. Shaw, “Evaluation of unbonded abrasive grains,” Ann. CIRP 22, 219–225 (1973).

1960

J. H. Westbrook, “Hardness–temperature characteristics of some simple glasses,” Phys. Chem. Glasses 1, 32–36 (1960).

1954

D. Tabor, “Moh’s hardness scale—a physical interpretation,” Proc. Phys. Soc. London Sect. B 67, 249–257 (1954).
[CrossRef]

1944

C. A. West, “Ceria for glass polishing,” Can. Chem. Process Ind. XXVII, 3–7 (1944).

1943

R. Steinitz, “The micro-hardness tester—a new tool in powder metallurgy,” Met. Alloys 17, 1183–1187 (1943).

Appels, J. T.

R. E. Parks, R. E. Sumner, J. T. Appels, “Observations on the polishing of metals,” Opt. Eng. 16, 332–337 (1977).
[CrossRef]

Arrasmith, S. R.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Babu, S. V.

S. Ramarajan, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, “Hardness of submicrometre abrasive particles and polish rate measurements,” Surf. Eng. 15, 324–328 (1999).
[CrossRef]

Bartels, G.

A. Krell, P. Blank, E. Wagner, G. Bartels, “Advances in the grinding efficiency of sintered alumina abrasives,” J. Am. Ceram. Soc. 79, 763–769 (1996).
[CrossRef]

Blank, P.

A. Krell, P. Blank, E. Wagner, G. Bartels, “Advances in the grinding efficiency of sintered alumina abrasives,” J. Am. Ceram. Soc. 79, 763–769 (1996).
[CrossRef]

Boehm, G.

G. Boehm, “Properties and novel applications of ferrous carboxylate powders,” Fachber. Huetten. Metall. 20, 146–152 (1982).

Bossis, G.

Y. Graselli, G. Bossis, E. Lemaire, “Field-induced structure in magnetorheological suspensions,” Prog. Colloid Polym. Sci. 93, 175–177 (1993).

Brecker, J. N.

J. N. Brecker, R. Komanduri, M. C. Shaw, “Evaluation of unbonded abrasive grains,” Ann. CIRP 22, 219–225 (1973).

Brooks, C. R.

C. R. Brooks, Heat Treatment of Ferrous Alloys (Hemisphere, Washington, D.C., 1979).

Burns, S. J.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
[CrossRef]

Callister, W. D.

W. D. Callister, Materials Science and Engineering, 2nd ed. (Wiley, New York, 1991), pp. 131–141.

Cumbo, M. J.

Dahmani, F.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
[CrossRef]

Dumas, P.

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. A. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1997), pp. 251–274.

Ebenhoech, F. L.

F. L. Ebenhoech, “Carbonyl iron powder: production, properties, and applications,” Prog. Powder Metall. 42, 133–140 (1986).

Fang, T.

J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, D. Golini, “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 4448–4462 (1996).
[CrossRef] [PubMed]

T. Fang, “Near-surface mechanical properties of optical materials in deterministic microgrinding,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1997), Chap. 3.

Friederang, A.

A. Friederang, BASF Corp., 3000 Continental Dr. North, Mt. Olive, N.J. 07828 (personal communication, 1998).

Fujihana, T.

T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
[CrossRef]

Funkenbusch, P. D.

Golini, D.

J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, D. Golini, “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 4448–4462 (1996).
[CrossRef] [PubMed]

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. A. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1997), pp. 251–274.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Gorodkin, G. R.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Gorostiza, P.

K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, “Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals,” J. Mater. Res. 14, 3973–3982 (1999).
[CrossRef]

Graselli, Y.

Y. Graselli, G. Bossis, E. Lemaire, “Field-induced structure in magnetorheological suspensions,” Prog. Colloid Polym. Sci. 93, 175–177 (1993).

Gregg, L. L.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Hariharaputhiran, M.

S. Ramarajan, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, “Hardness of submicrometre abrasive particles and polish rate measurements,” Surf. Eng. 15, 324–328 (1999).
[CrossRef]

Hay, J. C.

J. C. Hay, G. M. Pharr, “Critical issues in measuring the mechanical properties of hard films on soft substrates by nanoindentation techniques,” in Thin Films—Stresses and Mechanical Properties VII, R. C. Cammarata, M. Nastasi, E. P. Busso, W. C. Oliver, eds. (Materials Research Society, Warrendale, Pa., 1998), Vol. 505, pp. 65–70.

Her, Y.-S.

S. Ramarajan, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, “Hardness of submicrometre abrasive particles and polish rate measurements,” Surf. Eng. 15, 324–328 (1999).
[CrossRef]

Hubregsen, J.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Iwaki, M.

T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
[CrossRef]

Izumitani, T. S.

T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), pp. 92–98.

Jacobs, S.

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. A. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1997), pp. 251–274.

Jacobs, S. D.

J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, D. Golini, “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 4448–4462 (1996).
[CrossRef] [PubMed]

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Japka, J. E.

J. E. Japka, “Microstructure and properties of carbonyl iron powder,” J. Met. 40, 18–21 (1988).

Jones, W. J. D.

G. K. Nathan, W. J. D. Jones, “Influence of the hardness of abrasives on the abrasive wear of metals,” Proc. Inst. Mech. Eng. 181, 215–221 (1966–1967).

Kaller, A.

A. Kaller, “Properties of polishing media for precision optics,” Glass Sci. Technol. 71, 174–183 (1998).

Karow, H. H.

H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993), Chap. 3.

Knapp, J.

J. Knapp, Praxair Surface Technologies, 1500 Polco St., Indianapolis, Ind. 46224 (personal communication, 1999).

Komanduri, R.

J. N. Brecker, R. Komanduri, M. C. Shaw, “Evaluation of unbonded abrasive grains,” Ann. CIRP 22, 219–225 (1973).

Kordonski, W.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. A. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1997), pp. 251–274.

Kousaka, Y.

K. Okuyama, Y. Kousaka, “Hardness of particles,” in Powder Technology Handbook, K. Iinoya, K. Gotoh, K. Higashitani, eds. (Marcel Dekker, New York, 1991), pp. 57–91.

Kozhinova, I.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Krell, A.

A. Krell, P. Blank, E. Wagner, G. Bartels, “Advances in the grinding efficiency of sintered alumina abrasives,” J. Am. Ceram. Soc. 79, 763–769 (1996).
[CrossRef]

Lambropoulos, J. C.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
[CrossRef]

J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, D. Golini, “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 4448–4462 (1996).
[CrossRef] [PubMed]

Lemaire, E.

Y. Graselli, G. Bossis, E. Lemaire, “Field-induced structure in magnetorheological suspensions,” Prog. Colloid Polym. Sci. 93, 175–177 (1993).

Li, J. C.

J. C. Li, Materials Science Program, University of Rochester, River Station, Rochester, N.Y. 14627 (personal communication, 1998).

Nassau, K.

K. Nassau, “Cubic zirconia: an update,” Lapidary J. 35, 1194–1200 (1981).

Nathan, G. K.

G. K. Nathan, W. J. D. Jones, “Influence of the hardness of abrasives on the abrasive wear of metals,” Proc. Inst. Mech. Eng. 181, 215–221 (1966–1967).

Okabe, Y.

T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
[CrossRef]

Okuyama, K.

K. Okuyama, Y. Kousaka, “Hardness of particles,” in Powder Technology Handbook, K. Iinoya, K. Gotoh, K. Higashitani, eds. (Marcel Dekker, New York, 1991), pp. 57–91.

Oliver, W. C.

W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).
[CrossRef]

G. M. Pharr, W. C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” Mater. Res. Bull. 17, 28–33 (1992).

Parks, R. E.

R. E. Parks, R. E. Sumner, J. T. Appels, “Observations on the polishing of metals,” Opt. Eng. 16, 332–337 (1977).
[CrossRef]

Pfeil, L. B.

L. B. Pfeil, “The nature, properties, and applications of carbonyl-iron powder,” in Proceedings of the Symposium on Powder Metallurgy (The Iron and Steel Institute, Grosvenor Gardens, London, 1947), Special Rep. 38, pp. 47–51.

Pharr, G. M.

W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).
[CrossRef]

G. M. Pharr, W. C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” Mater. Res. Bull. 17, 28–33 (1992).

J. C. Hay, G. M. Pharr, “Critical issues in measuring the mechanical properties of hard films on soft substrates by nanoindentation techniques,” in Thin Films—Stresses and Mechanical Properties VII, R. C. Cammarata, M. Nastasi, E. P. Busso, W. C. Oliver, eds. (Materials Research Society, Warrendale, Pa., 1998), Vol. 505, pp. 65–70.

Pratt, C.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
[CrossRef]

Prokhorov, I. V.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Ramarajan, S.

S. Ramarajan, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, “Hardness of submicrometre abrasive particles and polish rate measurements,” Surf. Eng. 15, 324–328 (1999).
[CrossRef]

Romanofsky, H. J.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Sangwal, K.

K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, “Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals,” J. Mater. Res. 14, 3973–3982 (1999).
[CrossRef]

Sanz, F.

K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, “Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals,” J. Mater. Res. 14, 3973–3982 (1999).
[CrossRef]

Schmid, A. W.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
[CrossRef]

Sekiguchi, A.

T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
[CrossRef]

Servat, J.

K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, “Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals,” J. Mater. Res. 14, 3973–3982 (1999).
[CrossRef]

Shaw, M. C.

J. N. Brecker, R. Komanduri, M. C. Shaw, “Evaluation of unbonded abrasive grains,” Ann. CIRP 22, 219–225 (1973).

Shorey, A. B.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (MRF) of glass,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 2000), Chap. 5.

Sneddon, I. N.

I. N. Sneddon, Fourier Transforms, 1st ed. (McGraw-Hill, New York, 1951), Sec. 52.5.

Steinitz, R.

R. Steinitz, “The micro-hardness tester—a new tool in powder metallurgy,” Met. Alloys 17, 1183–1187 (1943).

Strafford, T. D.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Sumner, R. E.

R. E. Parks, R. E. Sumner, J. T. Appels, “Observations on the polishing of metals,” Opt. Eng. 16, 332–337 (1977).
[CrossRef]

Tabor, D.

D. Tabor, “Moh’s hardness scale—a physical interpretation,” Proc. Phys. Soc. London Sect. B 67, 249–257 (1954).
[CrossRef]

Takahashi, K.

T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
[CrossRef]

Verhoeven, J. D.

J. D. Verhoeven, Fundamentals of Physical Metallurgy (Wiley, New York, 1975), Chaps. 11 and 14.

Wagner, E.

A. Krell, P. Blank, E. Wagner, G. Bartels, “Advances in the grinding efficiency of sintered alumina abrasives,” J. Am. Ceram. Soc. 79, 763–769 (1996).
[CrossRef]

West, C. A.

C. A. West, “Ceria for glass polishing,” Can. Chem. Process Ind. XXVII, 3–7 (1944).

Westbrook, J. H.

J. H. Westbrook, “Hardness–temperature characteristics of some simple glasses,” Phys. Chem. Glasses 1, 32–36 (1960).

Zagari, D.

D. Zagari, Ferro Electronic Materials Division, Ferro Corp., 1789 Transelco Dr., Penn Yan, N.Y. 14527 (personal communication, 1999).

Ann. CIRP

J. N. Brecker, R. Komanduri, M. C. Shaw, “Evaluation of unbonded abrasive grains,” Ann. CIRP 22, 219–225 (1973).

Appl. Opt.

Can. Chem. Process Ind.

C. A. West, “Ceria for glass polishing,” Can. Chem. Process Ind. XXVII, 3–7 (1944).

Fachber. Huetten. Metall.

G. Boehm, “Properties and novel applications of ferrous carboxylate powders,” Fachber. Huetten. Metall. 20, 146–152 (1982).

Glass Sci. Technol.

A. Kaller, “Properties of polishing media for precision optics,” Glass Sci. Technol. 71, 174–183 (1998).

J. Am. Ceram. Soc.

A. Krell, P. Blank, E. Wagner, G. Bartels, “Advances in the grinding efficiency of sintered alumina abrasives,” J. Am. Ceram. Soc. 79, 763–769 (1996).
[CrossRef]

J. Mater. Res.

W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).
[CrossRef]

K. Sangwal, P. Gorostiza, J. Servat, F. Sanz, “Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals,” J. Mater. Res. 14, 3973–3982 (1999).
[CrossRef]

J. Mater. Sci.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. J. Burns, C. Pratt, “Nanoindentation technique for measuringresidual stress field around a laser-induced crack in fused silica,” J. Mater. Sci. 33, 4677–4685 (1998).
[CrossRef]

J. Met.

J. E. Japka, “Microstructure and properties of carbonyl iron powder,” J. Met. 40, 18–21 (1988).

Lapidary J.

K. Nassau, “Cubic zirconia: an update,” Lapidary J. 35, 1194–1200 (1981).

Mater. Res. Bull.

G. M. Pharr, W. C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” Mater. Res. Bull. 17, 28–33 (1992).

Met. Alloys

R. Steinitz, “The micro-hardness tester—a new tool in powder metallurgy,” Met. Alloys 17, 1183–1187 (1943).

Opt. Eng.

R. E. Parks, R. E. Sumner, J. T. Appels, “Observations on the polishing of metals,” Opt. Eng. 16, 332–337 (1977).
[CrossRef]

Phys. Chem. Glasses

J. H. Westbrook, “Hardness–temperature characteristics of some simple glasses,” Phys. Chem. Glasses 1, 32–36 (1960).

Proc. Inst. Mech. Eng.

G. K. Nathan, W. J. D. Jones, “Influence of the hardness of abrasives on the abrasive wear of metals,” Proc. Inst. Mech. Eng. 181, 215–221 (1966–1967).

Proc. Phys. Soc. London Sect. B

D. Tabor, “Moh’s hardness scale—a physical interpretation,” Proc. Phys. Soc. London Sect. B 67, 249–257 (1954).
[CrossRef]

Prog. Colloid Polym. Sci.

Y. Graselli, G. Bossis, E. Lemaire, “Field-induced structure in magnetorheological suspensions,” Prog. Colloid Polym. Sci. 93, 175–177 (1993).

Prog. Powder Metall.

F. L. Ebenhoech, “Carbonyl iron powder: production, properties, and applications,” Prog. Powder Metall. 42, 133–140 (1986).

Surf. Coat. Technol.

T. Fujihana, A. Sekiguchi, Y. Okabe, K. Takahashi, M. Iwaki, “Effects of room-temperature carbon, nitrogen, and oxygen implantation on the surface hardening and corrosion protection of iron,” Surf. Coat. Technol. 51, 19–23 (1992).
[CrossRef]

Surf. Eng.

S. Ramarajan, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, “Hardness of submicrometre abrasive particles and polish rate measurements,” Surf. Eng. 15, 324–328 (1999).
[CrossRef]

Other

L. B. Pfeil, “The nature, properties, and applications of carbonyl-iron powder,” in Proceedings of the Symposium on Powder Metallurgy (The Iron and Steel Institute, Grosvenor Gardens, London, 1947), Special Rep. 38, pp. 47–51.

H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993), Chap. 3.

K. Okuyama, Y. Kousaka, “Hardness of particles,” in Powder Technology Handbook, K. Iinoya, K. Gotoh, K. Higashitani, eds. (Marcel Dekker, New York, 1991), pp. 57–91.

Corning glass 7940 was provided by Corning, Inc., 1 Riverfront Plaza, Corning, N.Y. 14831.

LHG8 glass was provided by Hoya Corp., 3400 Edison Way, Fremont, Calif. 94538.

KDP was provided by Cleveland Crystals, Inc., 19306 Redwood Rd., Cleveland, Oh. 44110. Indents were made on a fractured surface (i.e., a type II cut).

BASF Corp., 3000 Continental Dr. North, Mt. Olive, N.J. 07828.

ISP International, 1361 Alps Rd., Wayne, N.J. 07470.

Novamet, 681 Lawlins Rd., Wyckoff, N.J. 07481.

A. Friederang, BASF Corp., 3000 Continental Dr. North, Mt. Olive, N.J. 07828 (personal communication, 1998).

Exolon-Esk, 1000 E. Niagara St., Tonawanda, N.Y. 14151.

I Zirconia, batch 1502792, was provided courtesy of Saint Gobain/Norton Industrial Ceramics Corp., 1 New Bond St., Worcester, Mass. 01606.

The 1.0-µm C alumina polishing compound was provided by Praxair Surface Technologies, 1500 Polco St., Indianapolis, Ind. 46224.

Ferro Electronic Materials Division, Ferro Corp., 1789 Transelco Dr., Penn Yan, N.Y. 14527.

C. R. Brooks, Heat Treatment of Ferrous Alloys (Hemisphere, Washington, D.C., 1979).

J. D. Verhoeven, Fundamentals of Physical Metallurgy (Wiley, New York, 1975), Chaps. 11 and 14.

J. C. Li, Materials Science Program, University of Rochester, River Station, Rochester, N.Y. 14627 (personal communication, 1998).

J. Knapp, Praxair Surface Technologies, 1500 Polco St., Indianapolis, Ind. 46224 (personal communication, 1999).

D. Zagari, Ferro Electronic Materials Division, Ferro Corp., 1789 Transelco Dr., Penn Yan, N.Y. 14527 (personal communication, 1999).

A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (MRF) of glass,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 2000), Chap. 5.

Microgrit Micro Abrasives Corp., 720 Southampton Rd., Westfield, Mass. 01086.

T. Fang, “Near-surface mechanical properties of optical materials in deterministic microgrinding,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1997), Chap. 3.

W. D. Callister, Materials Science and Engineering, 2nd ed. (Wiley, New York, 1991), pp. 131–141.

The load was measured with the I-Scan pressure-measurement system from Tekscan, Inc., Boston, Mass. We used a Model 5051 pressure film with a maximum allowable load of 345 kPa (50 psi).

J. H. Rhodes, Universal Photonic, Inc., 495 W. John St., Hicksville, N.Y. 11801, provided the No. FJ0202 felt lap.

The Olympus Model VANOX-T AH-2 optical microscope, No. 501008, is made by Olympus Optical Co., Ltd., 22-2, Nishishinjuku 1-Chome, Shinjuku-ka, Tokyo, Japan.

Measurements were made by use of the Form Talysurf mechanical profilometer (Taylor Hobson, New Star Rd., Thurmaston Lane, Leicester LE4 7JQ, UK). The device has a 60-mm stylus-arm length and a 2-µm-radius tip.

Buehler, Ltd., 41 Wakegan Rd., Lake Bluff, Ill. 60044.

The SEM was a LEO Model 982 field emission microscope (LEO is a Zeiss-Leica company).

American Society for Testing and Materials, “E384–89 (1997)e2 standard test method for microhardness of materials,” in Metals Test Methods and Analytical Procedures, annual book of ASTM standards (American Society for Testing and Materials, West Conshohocken, Pa., 1999), Vol. 3.01, p. 393.

I. N. Sneddon, Fourier Transforms, 1st ed. (McGraw-Hill, New York, 1951), Sec. 52.5.

Nano Instruments, Inc., Model Nano IIs, Version 2.2 and accompanying operating instructions (Nano Instruments, Inc., 1001 Larson Dr., Oak Ridge, Tenn. 37830, 1996), p. 7.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. A. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1997), pp. 251–274.

The Zygo Model New View 100, a white-light interferometer with a 20× Mirau objective, was obtained from Zygo Corporation, Laurel Brook Rd., Middlefield, Conn. 06455.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), pp. 92–98.

J. C. Hay, G. M. Pharr, “Critical issues in measuring the mechanical properties of hard films on soft substrates by nanoindentation techniques,” in Thin Films—Stresses and Mechanical Properties VII, R. C. Cammarata, M. Nastasi, E. P. Busso, W. C. Oliver, eds. (Materials Research Society, Warrendale, Pa., 1998), Vol. 505, pp. 65–70.

A 16–18-µm wire-mesh sieve was obtained from Newark Wire Cloth Company, 351 Verona Dr., Newark, N.J. 07104.

Samples with dimensions of 2.54 cm × 1.27 cm × 0.64 cm were made from material provided by Schott Glass Technologies, 400 York Ave., Duryea, Pa. 18642.

Samarium–cobalt magnets (2.54 cm × 2.54 cm × 1.08 cm) were purchased from McMaster-Carr Supply Company, 600 County Line Road, Elmhurst, Ill. 60126. The magnets supply a field intensity of approximately 2.5 kG in a direction perpendicular to the surface of the magnet.

2-Ton Clear Epoxy was obtained from ITW Devcon, 30 Endicott St., Danvers, Mass. 01923.

Kapton is a polyamide film provided by DuPont, 1007 Market St., Wellington, Del. 19898. We used type HV300. Teflon films have also been used.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photograph of the MRF polishing process. The abrasive fluid emerges from the nozzle on the left-hand side and is carried to the right-hand side into the polishing zone below the part’s surface by the rotation of the wheel. The pole pieces are part of the electromagnet that provides the magnetic field that stiffens the fluid into a ribbon.

Fig. 2
Fig. 2

Microroughness (a) photograph and (b) plot of the surface of a fused-silica part after MRF without rotation. The MR fluid contains CI and nanodiamonds in a nonaqueous carrier fluid. The grooves are parallel to the flow and are a result of particle–glass interaction. They have a microroughness of 1.07 nm rms and an R max of 15.90 nm.

Fig. 3
Fig. 3

(a) Schematic diagram of the method used in sample preparation. The particles and the epoxy are sandwiched between two hard, flat surfaces so that a thin layer is formed. (b) Enlarged diagram of the epoxy layer on the BK7 substrate showing how the particles are thought to orient in the epoxy layer under the influence of a magnetic field.

Fig. 4
Fig. 4

Schematic diagram of the sample after the magnet has been removed and the top layer of epoxy has been ground and polished away. The flats on the particles constitute the potential indent sites.

Fig. 5
Fig. 5

(a) SEM of a large CI particle after a set of five indentations at a 5-mN maximum load. The initial indent was placed in the middle of the particle, and the five indents were spaced 2 µm apart. (b) Close up of the outlined area in (a). These micrographs demonstrate the capability of the nanoindenter to place multiple indents precisely on a 20- to 25-µm-diameter particle. Photographs like these are very challenging to obtain because of the difficulty in locating the indentation sites after moving the sample from the nanoindenter to the SEM.

Fig. 6
Fig. 6

Load–displacement curves of three indents that were placed in a linear array on a single particle. The continuous behavior of indent 1 suggests a legitimate particle indent, whereas the slope changes shown by indents 2 and 3 suggest that there might be a region that was contaminated by the epoxy on the edge of the particle. The curve for indent 2 shows a small region at the beginning of the loading with a shallow slope, suggesting a small soft layer between the indenter and the particle. The curve for indent 3 shows a march larger region with this shallow slope, suggesting a deeper soft layer. The position of the slope change is circled in the loading curves for indents 2 and 3.

Fig. 7
Fig. 7

Relative nanohardness values on a Berkovich hardness scale of the particle, the glasses, and the crystal that have been indented (in air) at a 5-mN load with the nanoindenter.

Fig. 8
Fig. 8

CI nanohardness plotted as a function of the sum of carbon and nitrogen present. An expected power-law dependence can be seen. Similar results are achieved if only nitrogen or only carbon is analyzed.

Tables (4)

Tables Icon

Table 1 Summary of the Hardness Data from the Literature for Various Abrasive Materials

Tables Icon

Table 2 Summary of the Manufacturers’ Informationa and the Nanohardness Results for the Indented Magnetic Particles Given in Rank Order from Hardest to Softest

Tables Icon

Table 3 Summary of the Manufacturers’ Informationa and the Nanohardness Results for the Indented Nonmagnetic Abrasives in Rank Order from Hardest to Softest

Tables Icon

Table 4 Summary of the Manufacturers’ Informationa and the Nanohardness Results for the Indented Bulk Optical Materials in Rank Order from Hardest to Softest

Metrics