Abstract

A 300-mm-aperture digital phase-shifting Fizeau interferometer has been developed in-house for precision metrology of optical components fabricated by the optical workshop at Telecommunications and Industrial Physics, Commonwealth Scientific and Industrial Research Organization. We describe the procedures used in the calibration of the instrument. A reference data file representing the deviations from flatness of the reference surface is generated, measurement uncertainty estimated, and aberrations in the instrument assessed. Measurements on 250-mm-diameter uncoated optical surfaces have consistently shown short-term repeatability of 0.3-nm rms from measurement to measurement and allowed for absolute characterization of these surfaces to within a few nanometers.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Dew, “The measurement of optical flatness,” J. Sci. Instrum. 43, 409–415 (1966).
    [CrossRef] [PubMed]
  2. G. Schultz, J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
    [CrossRef]
  3. G. Schultz, J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in OpticsE. Wolf, ed. (Elsevier, Amsterdam, 1976), Vol. 13, pp. 93–167.
    [CrossRef]
  4. R. E. Parks, “Removal of test optics errors,” in Advances in Optical Metrology I, N. Balasubramanian, J. C. Wyant, eds., Proc. SPIE153, 56–63 (1978).
    [CrossRef]
  5. B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 33, 379–383 (1984).
  6. J. Grzanna, G. Schulz, “Absolute testing of flatness standards at square-grid points,” Opt. Commun. 77, 107–112 (1990).
    [CrossRef]
  7. C. J. Wyant, “Absolute optical testing: better accuracy than the reference,” Photonics Spectra (March1991), pp. 97–101.
  8. L. Shao, R. E. Parks, C. Ai, “Absolute testing of flats using four data sets,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 94–97 (1992).
  9. G. Schulz, J. Grzanna, “Absolute flatness testing by the rotation method with optimal measuring error compensation,” Appl. Opt. 31, 3767–3780 (1992).
    [CrossRef] [PubMed]
  10. C. Ai, J. C. Wyant, “Absolute testing of flats by using even and odd functions,” Appl. Opt. 32, 4698–4705 (1993).
    [CrossRef] [PubMed]
  11. K. E. Elssner, A. Vogel, J. Grzanna, G. Schulz, “Establishing a flatness standard,” Appl. Opt. 33, 2437–2446 (1994).
    [CrossRef] [PubMed]
  12. C. J. Evans, R. N. Kestner, “Test optics error removal,” Appl. Opt. 35, 1015–1021 (1996).
    [CrossRef] [PubMed]
  13. M. Küchel, “Two new principles for absolute interferometric testing of planes,” in International Workshop on Interferometry (IWI’96), (Optical Society of Japan, Wako Saitama, Japan, 1996), pp. 73–76.
  14. G. D. Dew, “Systems of minimum deflection supports for optical flats,” J. Sci. Instrum. 43, 809–811 (1966).
    [CrossRef]
  15. L. A. Selberg, “Interferometer accuracy and precision,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 24–32 (1990).
    [CrossRef]
  16. R. Tronconi, V. Greco, G. Molesini, “Outline of interferometric methods used at INO to assess the absolute planarity of flats,” (Instituto Nazionale di Ottica, Firenze Italy, 1997).
  17. P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
    [CrossRef]
  18. C. J. Walsh, A. J. Leistner, J. Seckold, B. F. Oreb, D. I. Farrant, “Fabrication and measurement of optics for the Laser Interferometer Gravitational Wave Observatory,” Appl. Opt. 38, 2870–2879 (1999).
    [CrossRef]
  19. P. Hariharan, “Interferometric measurements of small-scale surface irregularities: sources of errors,” Opt. Eng. 36, 2330–2334 (1997).
    [CrossRef]
  20. K. Creath, “Phase measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 349–393.
    [CrossRef]
  21. J. E. Grievenkamp, J. H. Brunning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), Chap. 14.
  22. P. Hariharan, “Phase-stepping interferometry with laser diodes: effects of laser wavelength modulation,” Appl. Opt. 28, 1749–1750 (1989).
    [CrossRef]
  23. K. G. Larkin, B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740–1748 (1992).
    [CrossRef]
  24. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997).
    [CrossRef]
  25. T. Toshimi, “Mirror support: 3 or 9 points?” Sky Telesc. 88, 84–87 (1994).
  26. M. Heath, Scientific Computing (McGraw-Hill, New York, 1997), p. 134.
  27. P. Hariharan, “Optical flat surfaces: direct interferometric measurements of small-scale irregularities,” Opt. Eng. 35, 3265–3266 (1996).
    [CrossRef]
  28. Veeco Vision software, 2650 East Elvira Road, Tucson, Arizona 85706.
  29. B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

1999 (2)

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

C. J. Walsh, A. J. Leistner, J. Seckold, B. F. Oreb, D. I. Farrant, “Fabrication and measurement of optics for the Laser Interferometer Gravitational Wave Observatory,” Appl. Opt. 38, 2870–2879 (1999).
[CrossRef]

1997 (2)

P. Hariharan, “Interferometric measurements of small-scale surface irregularities: sources of errors,” Opt. Eng. 36, 2330–2334 (1997).
[CrossRef]

K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997).
[CrossRef]

1996 (2)

C. J. Evans, R. N. Kestner, “Test optics error removal,” Appl. Opt. 35, 1015–1021 (1996).
[CrossRef] [PubMed]

P. Hariharan, “Optical flat surfaces: direct interferometric measurements of small-scale irregularities,” Opt. Eng. 35, 3265–3266 (1996).
[CrossRef]

1994 (2)

1993 (1)

1992 (2)

1991 (1)

C. J. Wyant, “Absolute optical testing: better accuracy than the reference,” Photonics Spectra (March1991), pp. 97–101.

1990 (1)

J. Grzanna, G. Schulz, “Absolute testing of flatness standards at square-grid points,” Opt. Commun. 77, 107–112 (1990).
[CrossRef]

1989 (1)

1984 (1)

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 33, 379–383 (1984).

1967 (1)

1966 (2)

G. D. Dew, “The measurement of optical flatness,” J. Sci. Instrum. 43, 409–415 (1966).
[CrossRef] [PubMed]

G. D. Dew, “Systems of minimum deflection supports for optical flats,” J. Sci. Instrum. 43, 809–811 (1966).
[CrossRef]

Ai, C.

C. Ai, J. C. Wyant, “Absolute testing of flats by using even and odd functions,” Appl. Opt. 32, 4698–4705 (1993).
[CrossRef] [PubMed]

L. Shao, R. E. Parks, C. Ai, “Absolute testing of flats using four data sets,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 94–97 (1992).

Brunning, J. H.

J. E. Grievenkamp, J. H. Brunning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), Chap. 14.

Creath, K.

K. Creath, “Phase measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 349–393.
[CrossRef]

Dew, G. D.

G. D. Dew, “The measurement of optical flatness,” J. Sci. Instrum. 43, 409–415 (1966).
[CrossRef] [PubMed]

G. D. Dew, “Systems of minimum deflection supports for optical flats,” J. Sci. Instrum. 43, 809–811 (1966).
[CrossRef]

Elssner, K. E.

Evans, C. J.

Fairman, P. S.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

Farrant, D. I.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

C. J. Walsh, A. J. Leistner, J. Seckold, B. F. Oreb, D. I. Farrant, “Fabrication and measurement of optics for the Laser Interferometer Gravitational Wave Observatory,” Appl. Opt. 38, 2870–2879 (1999).
[CrossRef]

K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997).
[CrossRef]

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

Freund, C. H.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

Fritz, B. S.

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 33, 379–383 (1984).

Gilliand, Y.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

Greco, V.

R. Tronconi, V. Greco, G. Molesini, “Outline of interferometric methods used at INO to assess the absolute planarity of flats,” (Instituto Nazionale di Ottica, Firenze Italy, 1997).

Grievenkamp, J. E.

J. E. Grievenkamp, J. H. Brunning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), Chap. 14.

Grzanna, J.

Hariharan, P.

P. Hariharan, “Interferometric measurements of small-scale surface irregularities: sources of errors,” Opt. Eng. 36, 2330–2334 (1997).
[CrossRef]

P. Hariharan, “Optical flat surfaces: direct interferometric measurements of small-scale irregularities,” Opt. Eng. 35, 3265–3266 (1996).
[CrossRef]

P. Hariharan, “Phase-stepping interferometry with laser diodes: effects of laser wavelength modulation,” Appl. Opt. 28, 1749–1750 (1989).
[CrossRef]

Heath, M.

M. Heath, Scientific Computing (McGraw-Hill, New York, 1997), p. 134.

Hibino, K.

Kestner, R. N.

Küchel, M.

M. Küchel, “Two new principles for absolute interferometric testing of planes,” in International Workshop on Interferometry (IWI’96), (Optical Society of Japan, Wako Saitama, Japan, 1996), pp. 73–76.

Larkin, K. G.

Leistner, A. J.

C. J. Walsh, A. J. Leistner, J. Seckold, B. F. Oreb, D. I. Farrant, “Fabrication and measurement of optics for the Laser Interferometer Gravitational Wave Observatory,” Appl. Opt. 38, 2870–2879 (1999).
[CrossRef]

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

Lesha, F. J.

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

Molesini, G.

R. Tronconi, V. Greco, G. Molesini, “Outline of interferometric methods used at INO to assess the absolute planarity of flats,” (Instituto Nazionale di Ottica, Firenze Italy, 1997).

Oreb, B. F.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

C. J. Walsh, A. J. Leistner, J. Seckold, B. F. Oreb, D. I. Farrant, “Fabrication and measurement of optics for the Laser Interferometer Gravitational Wave Observatory,” Appl. Opt. 38, 2870–2879 (1999).
[CrossRef]

K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997).
[CrossRef]

K. G. Larkin, B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740–1748 (1992).
[CrossRef]

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

Parks, R. E.

L. Shao, R. E. Parks, C. Ai, “Absolute testing of flats using four data sets,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 94–97 (1992).

R. E. Parks, “Removal of test optics errors,” in Advances in Optical Metrology I, N. Balasubramanian, J. C. Wyant, eds., Proc. SPIE153, 56–63 (1978).
[CrossRef]

Schultz, G.

G. Schultz, J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
[CrossRef]

G. Schultz, J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in OpticsE. Wolf, ed. (Elsevier, Amsterdam, 1976), Vol. 13, pp. 93–167.
[CrossRef]

Schulz, G.

Schwider, J.

G. Schultz, J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
[CrossRef]

G. Schultz, J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in OpticsE. Wolf, ed. (Elsevier, Amsterdam, 1976), Vol. 13, pp. 93–167.
[CrossRef]

Seckold, J.

Seckold, J. A.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

Selberg, L. A.

L. A. Selberg, “Interferometer accuracy and precision,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 24–32 (1990).
[CrossRef]

Shao, L.

L. Shao, R. E. Parks, C. Ai, “Absolute testing of flats using four data sets,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 94–97 (1992).

Sona, C. M.

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

Toshimi, T.

T. Toshimi, “Mirror support: 3 or 9 points?” Sky Telesc. 88, 84–87 (1994).

Tronconi, R.

R. Tronconi, V. Greco, G. Molesini, “Outline of interferometric methods used at INO to assess the absolute planarity of flats,” (Instituto Nazionale di Ottica, Firenze Italy, 1997).

Vogel, A.

Walsh, C. J.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

C. J. Walsh, A. J. Leistner, J. Seckold, B. F. Oreb, D. I. Farrant, “Fabrication and measurement of optics for the Laser Interferometer Gravitational Wave Observatory,” Appl. Opt. 38, 2870–2879 (1999).
[CrossRef]

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

Ward, B. K.

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

Wyant, C. J.

C. J. Wyant, “Absolute optical testing: better accuracy than the reference,” Photonics Spectra (March1991), pp. 97–101.

Wyant, J. C.

Appl. Opt. (7)

J. Opt. Soc. Am. A (2)

J. Sci. Instrum. (2)

G. D. Dew, “Systems of minimum deflection supports for optical flats,” J. Sci. Instrum. 43, 809–811 (1966).
[CrossRef]

G. D. Dew, “The measurement of optical flatness,” J. Sci. Instrum. 43, 409–415 (1966).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Grzanna, G. Schulz, “Absolute testing of flatness standards at square-grid points,” Opt. Commun. 77, 107–112 (1990).
[CrossRef]

Opt. Eng. (4)

P. Hariharan, “Interferometric measurements of small-scale surface irregularities: sources of errors,” Opt. Eng. 36, 2330–2334 (1997).
[CrossRef]

B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 33, 379–383 (1984).

P. Hariharan, “Optical flat surfaces: direct interferometric measurements of small-scale irregularities,” Opt. Eng. 35, 3265–3266 (1996).
[CrossRef]

P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “A 300 mm aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999).
[CrossRef]

Photonics Spectra (1)

C. J. Wyant, “Absolute optical testing: better accuracy than the reference,” Photonics Spectra (March1991), pp. 97–101.

Sky Telesc. (1)

T. Toshimi, “Mirror support: 3 or 9 points?” Sky Telesc. 88, 84–87 (1994).

Other (11)

M. Heath, Scientific Computing (McGraw-Hill, New York, 1997), p. 134.

Veeco Vision software, 2650 East Elvira Road, Tucson, Arizona 85706.

B. F. Oreb, D. I. Farrant, C. J. Walsh, A. J. Leistner, F. J. Lesha, P. S. Fairman, C. M. Sona, “Metrology of LIGO core optics,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 18–30 (1999).

L. Shao, R. E. Parks, C. Ai, “Absolute testing of flats using four data sets,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 94–97 (1992).

L. A. Selberg, “Interferometer accuracy and precision,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 24–32 (1990).
[CrossRef]

R. Tronconi, V. Greco, G. Molesini, “Outline of interferometric methods used at INO to assess the absolute planarity of flats,” (Instituto Nazionale di Ottica, Firenze Italy, 1997).

K. Creath, “Phase measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 349–393.
[CrossRef]

J. E. Grievenkamp, J. H. Brunning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), Chap. 14.

G. Schultz, J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in OpticsE. Wolf, ed. (Elsevier, Amsterdam, 1976), Vol. 13, pp. 93–167.
[CrossRef]

R. E. Parks, “Removal of test optics errors,” in Advances in Optical Metrology I, N. Balasubramanian, J. C. Wyant, eds., Proc. SPIE153, 56–63 (1978).
[CrossRef]

M. Küchel, “Two new principles for absolute interferometric testing of planes,” in International Workshop on Interferometry (IWI’96), (Optical Society of Japan, Wako Saitama, Japan, 1996), pp. 73–76.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical schematic diagram of the LADI instrument. A.S., aperture stop; N.D.F., neutral density filter; R.D., rotating diffuser; TEC, thermoelectric cooler; SMPP, single-mode polarization-preserving fiber.

Fig. 2
Fig. 2

Photograph of one of the flats mounted in the external collar mount.

Fig. 3
Fig. 3

Schematic diagram of a cross section through a flat mounted in the external collar mount. 1. A, B, or C flat; 2. 3 × 2 finger supports; 3. metal collar; 4. steel ball race; 5. fine-ground metal plate; and 6. foam rubber layer covered with black velveteen cloth.

Fig. 4
Fig. 4

Schematic diagram of the individual measurements used in the calibration procedure. A, B, and C refer to the individual flats; the curve in the flat indicates sag that is due to gravity; the bar above B and C indicates that the flat is flipped upside down or inverted; the circular fiducial is used to identify the rotation of the flat by 180°; the orthogonal arrows indicate that the bottom flat is translated in the x and y directions between measurements; the curved arrow indicates that the bottom flat is rotated between measurements.

Fig. 5
Fig. 5

Two orthogonal diametral absolute profiles of the reference surface (without the gravitational sag).

Fig. 6
Fig. 6

Schematic diagram showing the locations of the additional profiles (x, y, and θ) measured on the reference flat.

Fig. 7
Fig. 7

Absolute surface figure map of reference surface C. The figure shows a gray-scale plot of the fitted surface at 27 × 27 grid of points along with a vertical (V i ) and a horizontal (H i ) diametral profile in nanometers.

Fig. 8
Fig. 8

Deformation of the reference flat over its full physical diameter (350 mm) as modeled by a finite-element analysis package. T marks the thick end of the flat, and sag contours are shown in nanometers.

Fig. 9
Fig. 9

Phase map showing the effect of the suspension mount on the reference flat.

Fig. 10
Fig. 10

Confidence level of the surface figure map and of the small-scale irregularities map as a function of spatial frequency.

Fig. 11
Fig. 11

Gray-scale plot of the RDF over a 250-mm aperture with Seidel terms removed. Also shown is a horizontal diametral profile through the phase map.

Fig. 12
Fig. 12

Averaged PSD plot of a number of diametral profiles of the reference flat along with the corresponding cumulative rms versus spatial frequency plot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S1=j,k=127Hjk+aj+bjyk-Vkj+ck+dkxj2,

Metrics