Abstract

In-fiber Bragg grating sensors were used to study mechanical strain in optical fibers that were terminated in standard-termination and ribbon connectors. Our findings indicate that terminated sensors experience a compressive strain whose magnitude depends on the cure profile of the epoxy encapsulant used in these connectors. Anneal treatments on these connectors generally reduce the mechanical stress by inducing stress relaxation in the encapsulant layer. These experiments demonstrate the viability of in-fiber sensors to characterize fiber-optic connector assemblies during and following termination.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Young, “Introduction to reliability-related problems in optical fiber connectors,” Opt. Eng. 30, 821–823 (1991).
    [CrossRef]
  2. C. Miller, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).
  3. S. Etemad, E. Scerbo, F. DeRosa, C. Burpee, “Integrity of optical fiber communication components: reliability of structural epoxy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 326.
  4. T. Higgins, “Connector users clamor for convenience but crave performance,” Laser Focus World 27, 165–173 (1991).
  5. E. W. Deeg, “Effect of elastic properties of ferrule materials on fiber-optic physical contact (PC) connections,” AMP J. Technol. 1, 25–31 (1991).
  6. E. Suhir, Structural Analysis in Microelectronic and Fiber Optic Systems (Van Nostrand Reinhold, New York, 1991).
    [CrossRef]
  7. E. Suhir, “Pull testing of a glass fiber soldered into a ferrule: how long should the test specimen be?” Appl. Opt. 33, 4109–4113 (1994).
    [CrossRef] [PubMed]
  8. E. Suhir, T. Sullivan, “Analysis of interfacial thermal stresses and adhesive strength of bi-annular cylinders,” Int. J. Solids Struct. 26, 581–600 (1990).
    [CrossRef]
  9. F. Ansari, Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
    [CrossRef]
  10. X. Jin, J. S. Sirkis, J.-K. Chung, “Optical fiber sensor for simultaneous measurement of strain and temperature,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 120–129 (1997).
  11. D. Meggitt, Optical Sensor Technology (Chapman & Hall, London, 1995).
  12. R. J. Van Steenkiste, G. S. Springer, Strain and Temperature Measurement with Fiber Optic Sensors (Technomic, New York, 1997).
  13. H. Singh, “Strain and temperature sensing using optical fiber sensors,” Ph.D. dissertation (University of Maryland, College Park, Md., 1995).
  14. T. Osswald, G. Menges, Material Science of Polymers for Engineers (Hanser, New York, 1995).
  15. D. Adolf, J. Martin, “Calculation of stresses in crosslinking polymers,” J. Compos. Mater. 30, 13–34 (1996).
    [CrossRef]
  16. R. Chambers, D. Adolf, J. Martin, T. Guess, R. Lagasse, “A finite element analysis of stresses generated in curing epoxies,” in Abstract Proceedings of the VII International Congress on Experimental Mechanics (Society for Experimental Mechanics, Bethel, Conn., 1996), p. 46.
  17. D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
    [CrossRef]
  18. K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  19. S. Magne, S. Rougeault, M. Vilela, P. Ferdinand, “State-of-strain evaluation with fiber Bragg grating rosettes: application to discrimination between strain and temperature effects in fiber sensors,” Appl. Opt. 36, 9437–9447 (1997).
    [CrossRef]

1998 (2)

F. Ansari, Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
[CrossRef]

1997 (2)

1996 (1)

D. Adolf, J. Martin, “Calculation of stresses in crosslinking polymers,” J. Compos. Mater. 30, 13–34 (1996).
[CrossRef]

1994 (1)

1991 (3)

W. Young, “Introduction to reliability-related problems in optical fiber connectors,” Opt. Eng. 30, 821–823 (1991).
[CrossRef]

T. Higgins, “Connector users clamor for convenience but crave performance,” Laser Focus World 27, 165–173 (1991).

E. W. Deeg, “Effect of elastic properties of ferrule materials on fiber-optic physical contact (PC) connections,” AMP J. Technol. 1, 25–31 (1991).

1990 (1)

E. Suhir, T. Sullivan, “Analysis of interfacial thermal stresses and adhesive strength of bi-annular cylinders,” Int. J. Solids Struct. 26, 581–600 (1990).
[CrossRef]

Adolf, D.

D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
[CrossRef]

D. Adolf, J. Martin, “Calculation of stresses in crosslinking polymers,” J. Compos. Mater. 30, 13–34 (1996).
[CrossRef]

R. Chambers, D. Adolf, J. Martin, T. Guess, R. Lagasse, “A finite element analysis of stresses generated in curing epoxies,” in Abstract Proceedings of the VII International Congress on Experimental Mechanics (Society for Experimental Mechanics, Bethel, Conn., 1996), p. 46.

Ansari, F.

F. Ansari, Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

Burchett, S.

D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
[CrossRef]

Burpee, C.

S. Etemad, E. Scerbo, F. DeRosa, C. Burpee, “Integrity of optical fiber communication components: reliability of structural epoxy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 326.

Chambers, R.

D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
[CrossRef]

R. Chambers, D. Adolf, J. Martin, T. Guess, R. Lagasse, “A finite element analysis of stresses generated in curing epoxies,” in Abstract Proceedings of the VII International Congress on Experimental Mechanics (Society for Experimental Mechanics, Bethel, Conn., 1996), p. 46.

Chung, J.-K.

X. Jin, J. S. Sirkis, J.-K. Chung, “Optical fiber sensor for simultaneous measurement of strain and temperature,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 120–129 (1997).

Deeg, E. W.

E. W. Deeg, “Effect of elastic properties of ferrule materials on fiber-optic physical contact (PC) connections,” AMP J. Technol. 1, 25–31 (1991).

DeRosa, F.

S. Etemad, E. Scerbo, F. DeRosa, C. Burpee, “Integrity of optical fiber communication components: reliability of structural epoxy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 326.

Etemad, S.

S. Etemad, E. Scerbo, F. DeRosa, C. Burpee, “Integrity of optical fiber communication components: reliability of structural epoxy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 326.

Ferdinand, P.

Guess, T.

D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
[CrossRef]

R. Chambers, D. Adolf, J. Martin, T. Guess, R. Lagasse, “A finite element analysis of stresses generated in curing epoxies,” in Abstract Proceedings of the VII International Congress on Experimental Mechanics (Society for Experimental Mechanics, Bethel, Conn., 1996), p. 46.

Higgins, T.

T. Higgins, “Connector users clamor for convenience but crave performance,” Laser Focus World 27, 165–173 (1991).

Hill, K.

K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Jin, X.

X. Jin, J. S. Sirkis, J.-K. Chung, “Optical fiber sensor for simultaneous measurement of strain and temperature,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 120–129 (1997).

Lagasse, R.

R. Chambers, D. Adolf, J. Martin, T. Guess, R. Lagasse, “A finite element analysis of stresses generated in curing epoxies,” in Abstract Proceedings of the VII International Congress on Experimental Mechanics (Society for Experimental Mechanics, Bethel, Conn., 1996), p. 46.

Libo, Y.

F. Ansari, Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

Magne, S.

Martin, J.

D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
[CrossRef]

D. Adolf, J. Martin, “Calculation of stresses in crosslinking polymers,” J. Compos. Mater. 30, 13–34 (1996).
[CrossRef]

R. Chambers, D. Adolf, J. Martin, T. Guess, R. Lagasse, “A finite element analysis of stresses generated in curing epoxies,” in Abstract Proceedings of the VII International Congress on Experimental Mechanics (Society for Experimental Mechanics, Bethel, Conn., 1996), p. 46.

Meggitt, D.

D. Meggitt, Optical Sensor Technology (Chapman & Hall, London, 1995).

Meltz, G.

K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Menges, G.

T. Osswald, G. Menges, Material Science of Polymers for Engineers (Hanser, New York, 1995).

Miller, C.

C. Miller, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).

Osswald, T.

T. Osswald, G. Menges, Material Science of Polymers for Engineers (Hanser, New York, 1995).

Rougeault, S.

Scerbo, E.

S. Etemad, E. Scerbo, F. DeRosa, C. Burpee, “Integrity of optical fiber communication components: reliability of structural epoxy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 326.

Singh, H.

H. Singh, “Strain and temperature sensing using optical fiber sensors,” Ph.D. dissertation (University of Maryland, College Park, Md., 1995).

Sirkis, J. S.

X. Jin, J. S. Sirkis, J.-K. Chung, “Optical fiber sensor for simultaneous measurement of strain and temperature,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 120–129 (1997).

Springer, G. S.

R. J. Van Steenkiste, G. S. Springer, Strain and Temperature Measurement with Fiber Optic Sensors (Technomic, New York, 1997).

Suhir, E.

E. Suhir, “Pull testing of a glass fiber soldered into a ferrule: how long should the test specimen be?” Appl. Opt. 33, 4109–4113 (1994).
[CrossRef] [PubMed]

E. Suhir, T. Sullivan, “Analysis of interfacial thermal stresses and adhesive strength of bi-annular cylinders,” Int. J. Solids Struct. 26, 581–600 (1990).
[CrossRef]

E. Suhir, Structural Analysis in Microelectronic and Fiber Optic Systems (Van Nostrand Reinhold, New York, 1991).
[CrossRef]

Sullivan, T.

E. Suhir, T. Sullivan, “Analysis of interfacial thermal stresses and adhesive strength of bi-annular cylinders,” Int. J. Solids Struct. 26, 581–600 (1990).
[CrossRef]

Van Steenkiste, R. J.

R. J. Van Steenkiste, G. S. Springer, Strain and Temperature Measurement with Fiber Optic Sensors (Technomic, New York, 1997).

Vilela, M.

Young, W.

W. Young, “Introduction to reliability-related problems in optical fiber connectors,” Opt. Eng. 30, 821–823 (1991).
[CrossRef]

AMP J. Technol. (1)

E. W. Deeg, “Effect of elastic properties of ferrule materials on fiber-optic physical contact (PC) connections,” AMP J. Technol. 1, 25–31 (1991).

Appl. Opt. (2)

Int. J. Solids Struct. (1)

E. Suhir, T. Sullivan, “Analysis of interfacial thermal stresses and adhesive strength of bi-annular cylinders,” Int. J. Solids Struct. 26, 581–600 (1990).
[CrossRef]

J. Compos. Mater. (1)

D. Adolf, J. Martin, “Calculation of stresses in crosslinking polymers,” J. Compos. Mater. 30, 13–34 (1996).
[CrossRef]

J. Eng. Mech. (1)

F. Ansari, Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

J. Lightwave Technol. (1)

K. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

J. Mater. Res. (1)

D. Adolf, J. Martin, R. Chambers, S. Burchett, T. Guess, “Stresses during thermoset cure,” J. Mater. Res. 13, 530–550 (1998).
[CrossRef]

Laser Focus World (1)

T. Higgins, “Connector users clamor for convenience but crave performance,” Laser Focus World 27, 165–173 (1991).

Opt. Eng. (1)

W. Young, “Introduction to reliability-related problems in optical fiber connectors,” Opt. Eng. 30, 821–823 (1991).
[CrossRef]

Other (9)

C. Miller, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986).

S. Etemad, E. Scerbo, F. DeRosa, C. Burpee, “Integrity of optical fiber communication components: reliability of structural epoxy,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 326.

E. Suhir, Structural Analysis in Microelectronic and Fiber Optic Systems (Van Nostrand Reinhold, New York, 1991).
[CrossRef]

R. Chambers, D. Adolf, J. Martin, T. Guess, R. Lagasse, “A finite element analysis of stresses generated in curing epoxies,” in Abstract Proceedings of the VII International Congress on Experimental Mechanics (Society for Experimental Mechanics, Bethel, Conn., 1996), p. 46.

X. Jin, J. S. Sirkis, J.-K. Chung, “Optical fiber sensor for simultaneous measurement of strain and temperature,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 120–129 (1997).

D. Meggitt, Optical Sensor Technology (Chapman & Hall, London, 1995).

R. J. Van Steenkiste, G. S. Springer, Strain and Temperature Measurement with Fiber Optic Sensors (Technomic, New York, 1997).

H. Singh, “Strain and temperature sensing using optical fiber sensors,” Ph.D. dissertation (University of Maryland, College Park, Md., 1995).

T. Osswald, G. Menges, Material Science of Polymers for Engineers (Hanser, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of a connector cross section (not to scale).

Fig. 2
Fig. 2

Bragg grating spectrum (a) before termination and (b) after termination. The Bragg grating produces the narrow dip in the spectrum profile.

Fig. 3
Fig. 3

Demodulation setup for Bragg sensors.

Fig. 4
Fig. 4

Schematic diagram of the 12-fiber MT ribbon connector ferrule.

Fig. 5
Fig. 5

Cross section of the connector with the preferred sensor location.

Fig. 6
Fig. 6

Finite-element model results for the strain components along the axis of an optical fiber that was embedded in a connector and thermally cooled at 112 °C.

Fig. 7
Fig. 7

HPR data of three terminated Bragg gratings. (a) 0.7-mm-long Bragg grating at connector endface (sensor 1). (b) 0.8-mm-long Bragg grating at connector endface (sensor 5). (c) 1-mm-long Bragg grating set approximately 0.5 mm from the connector’s endface (sensor 7).

Fig. 8
Fig. 8

Bragg shifts of sensors in ribbon ferrule after termination and subsequent anneals.

Fig. 9
Fig. 9

Bragg shifts of sensors embedded in ribbon ferrule. Each measurement number represents a step in the experiment, starting with termination and ending with the third anneal.

Tables (4)

Tables Icon

Table 1 Typical Material Properties of Fiber Connector Components

Tables Icon

Table 2 Results of the ST Connector Experimenta

Tables Icon

Table 3 Results of Ribbon Connector Experimenta

Tables Icon

Table 4 Drift in Fiber Sensors between Termination and Anneal Treatments

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔλBragg/λBragg=KsL+KHH+KTΔT,
ΔλBragg/λBragg=KLSL+KTΔT,

Metrics