Abstract

We provide experimental results from the scattering of light by deformed liquid droplets and droplets with inclusions. The characterization of droplet deformation could lead to improved measurement of droplet size as measured by commercial aerodynamic particle-sizing instruments. The characterization of droplets with inclusions can be of importance in some industrial, occupational, and military aerosol monitoring situations. The nozzle assembly from a TSI Aerodynamic Particle Sizer was used to provide the accelerating flow conditions in which experimental data were recorded. A helium–neon laser was employed to generate the light-scattering data, and an externally triggered, pulsed copper vapor laser provided illumination for a droplet imaging system arranged orthogonal to the He–Ne scattering axis. The observed droplet deformation correlates well over a limited acceleration range with theoretical predictions derived from an analytical solution of the Navier–Stokes equation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).
    [CrossRef]
  2. J. K. Agarwal, R. J. Remiarz, “Development of an aerodynamic particle size analyser,” (National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1981).
  3. P. A. Baron, “Calibration and use of the Aerodynamic Particle Sizer (APS 3300),” Aerosol Sci. Technol. 5, 55–67 (1986).
    [CrossRef]
  4. W. D. Griffiths, P. J. Iles, N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427–431 (1986).
    [CrossRef]
  5. S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
    [CrossRef]
  6. E. Hirst, P. H. Kaye, J. R. Guppy, “Light scattering from nonspherical airborne particles: theoretical and experimental comparisons,” Appl. Opt. 33, 7180–7187 (1994).
    [CrossRef] [PubMed]
  7. P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19215–19221 (1996).
    [CrossRef]
  8. P. H. Kaye, E. Hirst, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997).
    [CrossRef] [PubMed]
  9. K. Willeke, P. A. Baron, Aerosol Measurement: Principles, Techniques, and Applications. (Van Nostrand Reinhold, New York, 1993).
  10. W. J. Smith, Modern Optical Engineering, (McGraw-Hill, New York, 1966), pp. 439–443.
  11. G. Ananth, J. C. Wilson, “Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer,” Aerosol Sci. Technol. 9, 189–199 (1988).
    [CrossRef]
  12. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-InterScience, New York, 1983).
  13. The Mathworks, Inc.Matlab, 5.3.0.10183 (R11) (The Mathworks, Inc., 3 Apple Drive, Natick, Mass. 01760, 1999).
  14. D. L. Bartley, A. B. Martinez, P. A. Baron, D. R. Secker, E. Hirst, “Droplet distortion in accelerating flow,” J. Aerosol Sci. (to be published).
  15. T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
    [CrossRef]
  16. T. Mattila, M. Kulmala, T. Vesala, “On the condensational growth of a multicomponent droplet,” J. Aerosol Sci. 28, 553–564 (1997).
    [CrossRef]

2000 (1)

1998 (1)

1997 (3)

T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
[CrossRef]

T. Mattila, M. Kulmala, T. Vesala, “On the condensational growth of a multicomponent droplet,” J. Aerosol Sci. 28, 553–564 (1997).
[CrossRef]

P. H. Kaye, E. Hirst, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149–6156 (1997).
[CrossRef] [PubMed]

1996 (1)

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19215–19221 (1996).
[CrossRef]

1994 (1)

1988 (1)

G. Ananth, J. C. Wilson, “Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer,” Aerosol Sci. Technol. 9, 189–199 (1988).
[CrossRef]

1986 (2)

P. A. Baron, “Calibration and use of the Aerodynamic Particle Sizer (APS 3300),” Aerosol Sci. Technol. 5, 55–67 (1986).
[CrossRef]

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427–431 (1986).
[CrossRef]

Agarwal, J. K.

J. K. Agarwal, R. J. Remiarz, “Development of an aerodynamic particle size analyser,” (National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1981).

Alexander-Buckley, K.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19215–19221 (1996).
[CrossRef]

Ananth, G.

G. Ananth, J. C. Wilson, “Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer,” Aerosol Sci. Technol. 9, 189–199 (1988).
[CrossRef]

Baron, P. A.

P. A. Baron, “Calibration and use of the Aerodynamic Particle Sizer (APS 3300),” Aerosol Sci. Technol. 5, 55–67 (1986).
[CrossRef]

D. L. Bartley, A. B. Martinez, P. A. Baron, D. R. Secker, E. Hirst, “Droplet distortion in accelerating flow,” J. Aerosol Sci. (to be published).

K. Willeke, P. A. Baron, Aerosol Measurement: Principles, Techniques, and Applications. (Van Nostrand Reinhold, New York, 1993).

Bartley, D.

Bartley, D. L.

D. L. Bartley, A. B. Martinez, P. A. Baron, D. R. Secker, E. Hirst, “Droplet distortion in accelerating flow,” J. Aerosol Sci. (to be published).

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-InterScience, New York, 1983).

Bottiger, J. R.

Chang, R. K.

Fu, Q.

Greenaway, R. S.

Griffiths, W. D.

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427–431 (1986).
[CrossRef]

Guppy, J. R.

Hill, S. C.

Hillis, D. B.

Hirst, E.

Holler, S.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-InterScience, New York, 1983).

Iles, P. J.

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427–431 (1986).
[CrossRef]

Kaye, P. H.

Kulmala, M.

T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
[CrossRef]

T. Mattila, M. Kulmala, T. Vesala, “On the condensational growth of a multicomponent droplet,” J. Aerosol Sci. 28, 553–564 (1997).
[CrossRef]

Martinez, A. B.

D. L. Bartley, A. B. Martinez, P. A. Baron, D. R. Secker, E. Hirst, “Droplet distortion in accelerating flow,” J. Aerosol Sci. (to be published).

Mattila, T.

T. Mattila, M. Kulmala, T. Vesala, “On the condensational growth of a multicomponent droplet,” J. Aerosol Sci. 28, 553–564 (1997).
[CrossRef]

Pan, Y.

Remiarz, R. J.

J. K. Agarwal, R. J. Remiarz, “Development of an aerodynamic particle size analyser,” (National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1981).

Rudolf, R.

T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
[CrossRef]

Saunders, S.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19215–19221 (1996).
[CrossRef]

Secker, D. R.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, (McGraw-Hill, New York, 1966), pp. 439–443.

Sun, W.

Vaughan, N. P.

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427–431 (1986).
[CrossRef]

Vesala, T.

T. Mattila, M. Kulmala, T. Vesala, “On the condensational growth of a multicomponent droplet,” J. Aerosol Sci. 28, 553–564 (1997).
[CrossRef]

T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
[CrossRef]

Videen, G.

Vrtala, A.

T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
[CrossRef]

Wagner, P. E.

T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
[CrossRef]

Wang-Thomas, Z.

Willeke, K.

K. Willeke, P. A. Baron, Aerosol Measurement: Principles, Techniques, and Applications. (Van Nostrand Reinhold, New York, 1993).

Wilson, J. C.

G. Ananth, J. C. Wilson, “Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer,” Aerosol Sci. Technol. 9, 189–199 (1988).
[CrossRef]

Aerosol Sci. Technol. (2)

G. Ananth, J. C. Wilson, “Theoretical analysis of the performance of the TSI Aerodynamic Particle Sizer,” Aerosol Sci. Technol. 9, 189–199 (1988).
[CrossRef]

P. A. Baron, “Calibration and use of the Aerodynamic Particle Sizer (APS 3300),” Aerosol Sci. Technol. 5, 55–67 (1986).
[CrossRef]

Appl. Opt. (3)

J. Aerosol Sci. (3)

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427–431 (1986).
[CrossRef]

T. Vesala, M. Kulmala, R. Rudolf, A. Vrtala, P. E. Wagner, “Models for condensational growth and evaporation of binary aerosol particles,” J. Aerosol Sci. 28, 565–598 (1997).
[CrossRef]

T. Mattila, M. Kulmala, T. Vesala, “On the condensational growth of a multicomponent droplet,” J. Aerosol Sci. 28, 553–564 (1997).
[CrossRef]

J. Geophys. Res. D (1)

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophys. Res. D 101, 19215–19221 (1996).
[CrossRef]

Opt. Lett. (1)

Other (6)

J. K. Agarwal, R. J. Remiarz, “Development of an aerodynamic particle size analyser,” (National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1981).

K. Willeke, P. A. Baron, Aerosol Measurement: Principles, Techniques, and Applications. (Van Nostrand Reinhold, New York, 1993).

W. J. Smith, Modern Optical Engineering, (McGraw-Hill, New York, 1966), pp. 439–443.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-InterScience, New York, 1983).

The Mathworks, Inc.Matlab, 5.3.0.10183 (R11) (The Mathworks, Inc., 3 Apple Drive, Natick, Mass. 01760, 1999).

D. L. Bartley, A. B. Martinez, P. A. Baron, D. R. Secker, E. Hirst, “Droplet distortion in accelerating flow,” J. Aerosol Sci. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the particle delivery system used in TSI APS 3300 series instruments.

Fig. 2
Fig. 2

Examples of spatial light-scattering patterns from individual airborne particles. Top row, left to right: hematite ellipsoid, 2 µm; copper flake, ∼5 µm; sodium chloride crystal; sodium chloride crystal. Bottom row, from left to right: asbestos fiber (crocidolite); irregular background particle; asbestos fiber (chrysotile); water droplet, ∼9 µm in diameter.

Fig. 3
Fig. 3

Schematic diagram of apparatus used to acquire scattering patterns and real images from individual airborne droplets. PMT, photomultiplier tube; CV, copper vapor.

Fig. 4
Fig. 4

Spatial light-scattering patterns from individual droplets as a function of droplet size and sample flow rate.

Fig. 5
Fig. 5

Spatial light-scattering patterns and droplet images for 20-, 25-, and 30-µm-diameter droplets at various sample flow rates through the APS aerosol delivery nozzle.

Fig. 6
Fig. 6

Feret ratio plotted as a function of flow rate for 20-µm oleic acid droplets.

Fig. 7
Fig. 7

Image of a 20-µm nominal diameter oleic acid droplet together with the corresponding computed cross-sectional shape. The computation used the following values: density, 0.90 g/cm3; viscosity, 0.256 P; surface tension, 32 mJ/m2.

Fig. 8
Fig. 8

Scattering patterns recorded from droplets generated in a 40% RH environment: (a) a 20-µm-diameter glycerin droplet with no inclusion and (b) a 20-µm oleic acid droplet with inclusion. (c) shows an image of the type of droplet giving rise to the scattering in (b).

Fig. 9
Fig. 9

Scattering pattern and image of a 16-µm-diameter oleic acid droplet containing an inclusion with greater size (relative to the host droplet) than that shown in Fig. 8.

Metrics