Abstract

An electro-optic probe tip that is made from LiTaO crystal to make tangentially two-dimensional electric-field (E-field) vector measurements is presented. We combine a new electro-optic modulation technique and a conventional one to resolve the two E-field components. The new modulation effect on the optical probing beam is caused by rotation of the principal axis the electro-optic crystal, which is proportional to the E-field. Inasmuch as there is no free charge involved in the axis rotation, rotation modulation of the axis can be as fast as conventional modulation. The principles are carefully derived, and an experimental system constructed, to measure two-dimensional E-field vectors on a test pattern. The results are in good agreement with those obtained with commercial software for electromagnetic simulation. The sensitivities of two tangential E-field components are 76 (mV/cm)/Hz and 0.8 (V/cm)/Hz, respectively. The root-mean-square error of an E-field directional measurement is 1.5°.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription