Abstract

We describe frequency locking of a diode laser to a two-photon transition of rubidium using the Zeeman modulation technique. We locked and tuned the laser frequency by modulating and shifting the two-photon transition frequency with ac and dc magnetic fields. We achieved a linewidth of 500 kHz and continuous tunability over 280 MHz with no laser frequency modulation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  2. K. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  3. W. Demtroder, Laser Spectroscopy (Springer-Verlag, New York, 1996), Chap. 4.
  4. J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
    [CrossRef]
  5. J. Hall, M. Long-Sheng, G. Kramer, “Principles of optical phase-locking: application to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. QE-23, 427–433 (1987).
    [CrossRef]
  6. R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
    [CrossRef] [PubMed]
  7. J. Kawakami, M. Kourogi, M. Ohtsu, “Computer-controlled narrow-linewidth and frequency-stable AlGaAs laser system with unmodulated output,” Jpn. J. Appl. Phys. 33, 1623–1627 (1994).
    [CrossRef]
  8. See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
  9. T. Dinneen, C. Wallace, P. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277–282 (1992).
    [CrossRef]
  10. F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
    [CrossRef]
  11. V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
    [CrossRef]
  12. S. Svanberg, Atomic and Molecular Spectroscopy (Springer-Verlag, Berlin, 1991), Chap. 3.
    [CrossRef]
  13. R. Ludeke, E. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
    [CrossRef]
  14. L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
    [CrossRef]
  15. C. Townes, A. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chap. 5.
  16. D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
    [CrossRef]

2000 (1)

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

1995 (1)

D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
[CrossRef]

1994 (1)

J. Kawakami, M. Kourogi, M. Ohtsu, “Computer-controlled narrow-linewidth and frequency-stable AlGaAs laser system with unmodulated output,” Jpn. J. Appl. Phys. 33, 1623–1627 (1994).
[CrossRef]

1993 (3)

J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

1992 (2)

K. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

T. Dinneen, C. Wallace, P. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277–282 (1992).
[CrossRef]

1991 (1)

C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

1990 (1)

See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).

1988 (1)

R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
[CrossRef] [PubMed]

1987 (1)

J. Hall, M. Long-Sheng, G. Kramer, “Principles of optical phase-locking: application to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. QE-23, 427–433 (1987).
[CrossRef]

1972 (1)

R. Ludeke, E. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

Baluschev, S.

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

Biraben, F.

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Brecha, R. J.

See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).

Campbell, J. C.

See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).

Campbell, N.

J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Cimini, L.

R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
[CrossRef] [PubMed]

Davidson, N.

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

Demtroder, W.

W. Demtroder, Laser Spectroscopy (Springer-Verlag, New York, 1996), Chap. 4.

Dinneen, T.

T. Dinneen, C. Wallace, P. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277–282 (1992).
[CrossRef]

Dunn, M.

D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
[CrossRef]

Fathi, D.

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

Felder, R.

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Friedman, N.

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

Fulton, D.

D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
[CrossRef]

Gould, P.

T. Dinneen, C. Wallace, P. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277–282 (1992).
[CrossRef]

Grande, C.

J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Grot, A.

R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
[CrossRef] [PubMed]

Hall, J.

J. Hall, M. Long-Sheng, G. Kramer, “Principles of optical phase-locking: application to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. QE-23, 427–433 (1987).
[CrossRef]

Hansch, T.

V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Harris, E.

R. Ludeke, E. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

Hollberg, L.

C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Kawakami, J.

J. Kawakami, M. Kourogi, M. Ohtsu, “Computer-controlled narrow-linewidth and frequency-stable AlGaAs laser system with unmodulated output,” Jpn. J. Appl. Phys. 33, 1623–1627 (1994).
[CrossRef]

Khaykovich, L.

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

Kimble, H. J.

See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).

Knorpp, R.

J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Kourogi, M.

J. Kawakami, M. Kourogi, M. Ohtsu, “Computer-controlled narrow-linewidth and frequency-stable AlGaAs laser system with unmodulated output,” Jpn. J. Appl. Phys. 33, 1623–1627 (1994).
[CrossRef]

Kramer, G.

J. Hall, M. Long-Sheng, G. Kramer, “Principles of optical phase-locking: application to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. QE-23, 427–433 (1987).
[CrossRef]

Lee, W. D.

See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).

Long-Sheng, M.

J. Hall, M. Long-Sheng, G. Kramer, “Principles of optical phase-locking: application to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. QE-23, 427–433 (1987).
[CrossRef]

Ludeke, R.

R. Ludeke, E. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

MacAdam, K.

K. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Maki, J.

J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

McIntyre, D.

J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Millerioux, Y.

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Mosely, R.

D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
[CrossRef]

Nez, F.

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Ohtsu, M.

J. Kawakami, M. Kourogi, M. Ohtsu, “Computer-controlled narrow-linewidth and frequency-stable AlGaAs laser system with unmodulated output,” Jpn. J. Appl. Phys. 33, 1623–1627 (1994).
[CrossRef]

Reichmann, D.

R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
[CrossRef] [PubMed]

Sautenkov, V.

V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Schawlow, A.

C. Townes, A. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chap. 5.

Shephard, S.

D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
[CrossRef]

Sinclair, B.

D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
[CrossRef]

Steinbach, A.

K. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Svanberg, S.

S. Svanberg, Atomic and Molecular Spectroscopy (Springer-Verlag, Berlin, 1991), Chap. 3.
[CrossRef]

Townes, C.

C. Townes, A. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chap. 5.

Valenzuela, R.

R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
[CrossRef] [PubMed]

Vuletic, V.

V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Wallace, C.

T. Dinneen, C. Wallace, P. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277–282 (1992).
[CrossRef]

Wieman, C.

K. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Wilson, R.

R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
[CrossRef] [PubMed]

Zimmermann, C.

V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

Am. J. Phys. (1)

K. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Appl. Phys. Lett. (2)

See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).

R. Ludeke, E. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972).
[CrossRef]

Electron. Lett. (1)

R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988).
[CrossRef] [PubMed]

Europhys. Lett. (1)

L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Hall, M. Long-Sheng, G. Kramer, “Principles of optical phase-locking: application to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. QE-23, 427–433 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Kawakami, M. Kourogi, M. Ohtsu, “Computer-controlled narrow-linewidth and frequency-stable AlGaAs laser system with unmodulated output,” Jpn. J. Appl. Phys. 33, 1623–1627 (1994).
[CrossRef]

Opt. Commun. (5)

D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995).
[CrossRef]

T. Dinneen, C. Wallace, P. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277–282 (1992).
[CrossRef]

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
[CrossRef]

J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Other (3)

W. Demtroder, Laser Spectroscopy (Springer-Verlag, New York, 1996), Chap. 4.

S. Svanberg, Atomic and Molecular Spectroscopy (Springer-Verlag, Berlin, 1991), Chap. 3.
[CrossRef]

C. Townes, A. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic energy diagram of the 87Rb two-photon transition.

Fig. 2
Fig. 2

Experimental setup: ECDL, external cavity diode laser; M1, M2, mirrors; L1, L2, lenses; IO, optical isolator; BS, beam splitter; OSA, optical spectrum analyzer; PP, prism pair; PBS, polarizing beam splitter; IF, interference filter; PM, photomultiplier.

Fig. 3
Fig. 3

Zeeman-shifted two-photon signal at linear polarization and various values of the magnetic field magnitude for the transition 52 S 1/2, F g = 1 → 52 D 5/2, F e = 1–3 in 87Rb. The intensity axis was rescaled for clarity.

Fig. 4
Fig. 4

Calculated Zeeman-shifted energy levels of the 52 D 5/2 excited state of the 87Rb atom.

Fig. 5
Fig. 5

Zeeman-shifted two-photon signal for different polarizations and a fixed magnitude of the dc magnetic field for the transition 52 S 1/2, F g = 1 → 52 D 5/2, F e = 1–3 in 87Rb. The curves were shifted vertically for clarity.

Fig. 6
Fig. 6

Derivative signal at zero dc magnetic field for the transition 52 S 1/2, F g = 1 → 52 D 5/2, F e = 1–3 in 87Rb.

Fig. 7
Fig. 7

Lock point detuning as a function of magnetic field magnitude for (σ-, σ-) polarization. The line is a linear fit (ΔF = αB) to the experimental data with α = 2.82 MHz/G.

Metrics