Abstract

The millisecond heat dissipation of pump energy in polymeric, solid-state dye lasers has been studied with photothermal deflection spectroscopy (PTDS) to determine the contribution of that process to photodegradation of the active material. The samples were solutions of Rhodamine 6G in 2-hydroxyethyl methacrylate copolymerized with various amounts of methyl methacrylate or ethylene glycol dimethylacrylate to change the microstructure properties of the matrix. Values of the thermal diffusivity measured with PTDS were in the range 0.6–1.1 × 10-3 cm2 s-1 for all the compositions studied here. A comparison of these values with previous optical data on lasing efficiency and photostability for the same samples indicates that the macroscopic rate of thermal diffusion is not the key factor that limits the efficiency and stability of these lasers, at least for low pump repetition rates (<1 Hz).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
    [CrossRef]
  2. F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
    [CrossRef]
  3. R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).
  4. M. L. Ferrer, A. U. Acuña, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Proton-transfer lasers from solid polimeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole groups,” Appl. Opt. 33, 2266–2272 (1994).
    [CrossRef] [PubMed]
  5. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
    [CrossRef]
  6. R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
    [CrossRef]
  7. F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
    [CrossRef]
  8. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
    [CrossRef]
  9. R. Duchowicz, M. Ferrer, F. Amat-Guerri, R. Sastre, A. U. Acuña, “A proton-transfer dye laser pumped by the third harmonic of a Nd-YAG laser,” Opt. Commun. 104, 336–338 (1994).
    [CrossRef]
  10. A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
    [CrossRef]
  11. F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
    [CrossRef]
  12. T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
    [CrossRef]
  13. A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
    [CrossRef]
  14. A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
    [CrossRef]
  15. S. Popov, “Dye photodestruction in a solid-state dye laser with a polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
    [CrossRef]
  16. S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
    [CrossRef]
  17. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  18. A. C. Boccara, D. Fournier, W. Jackson, N. M. Amer, “Sensitive photothermal deflection technique for measuring absorption in optically thin media,” Opt. Lett. 5, 377–379 (1980).
    [CrossRef] [PubMed]
  19. J. A. Sell, ed., Photothermal Investigations of Solids and Fluids (Academic, New York, 1988).
  20. Q. He, R. Vyas, R. Gupta, “Theory of photothermal spectroscopy in an optically dense fluid,” Appl. Opt. 36, 1841–1859 (1997).
    [CrossRef] [PubMed]
  21. J. Brandrup, E. H. Immergut, eds. Polymer Handbook (Willey, New York, 1975).
  22. M. Ahmad, M. D. Rahn, T. A. King, “Singlet oxygen and dye-triplet-state quenching in solid-state dye lasers consisting of Pyrromethene 567-doped poly(methyl methacrylate),” Appl. Opt. 38, 6337–6342 (1999).
    [CrossRef]

1999 (2)

1998 (1)

1997 (4)

S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

Q. He, R. Vyas, R. Gupta, “Theory of photothermal spectroscopy in an optically dense fluid,” Appl. Opt. 36, 1841–1859 (1997).
[CrossRef] [PubMed]

1996 (2)

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

1995 (1)

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

1994 (2)

1993 (2)

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

1992 (1)

1985 (1)

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

1983 (1)

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

1981 (1)

1980 (1)

Acuña, A. U.

Ahmad, M.

Allik, T. H.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Amat Guerri, F.

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

Amat-Guerri, F.

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

R. Duchowicz, M. Ferrer, F. Amat-Guerri, R. Sastre, A. U. Acuña, “A proton-transfer dye laser pumped by the third harmonic of a Nd-YAG laser,” Opt. Commun. 104, 336–338 (1994).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Proton-transfer lasers from solid polimeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole groups,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Amer, N. M.

Barroso, J.

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

Boccara, A. C.

Chandra, S.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Costela, A.

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Proton-transfer lasers from solid polimeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole groups,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Duarte, F. J.

F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
[CrossRef]

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

Duchowicz, R.

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

R. Duchowicz, M. Ferrer, F. Amat-Guerri, R. Sastre, A. U. Acuña, “A proton-transfer dye laser pumped by the third harmonic of a Nd-YAG laser,” Opt. Commun. 104, 336–338 (1994).
[CrossRef]

Dyumaev, K. M.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Ehrlich, J. J.

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

Ferrer, M.

R. Duchowicz, M. Ferrer, F. Amat-Guerri, R. Sastre, A. U. Acuña, “A proton-transfer dye laser pumped by the third harmonic of a Nd-YAG laser,” Opt. Commun. 104, 336–338 (1994).
[CrossRef]

Ferrer, M. L.

Figuera, J. M.

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Proton-transfer lasers from solid polimeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole groups,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Florido, F.

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Proton-transfer lasers from solid polimeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole groups,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Fournier, D.

Fujii, K.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

García Moreno, I.

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

García-Moreno, I.

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

Goodman, R. B.

S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Govorkov, S.

S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Gromov, D. A.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Gupta, R.

He, Q.

Hermes, R. E.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Horn, M. W.

S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Hutchinson, J. A.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Jackson, W.

Jackson, W. B.

King, T. A.

Kinoshita, T.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

Koike, Y.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

Lopez Arbeloa, F.

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

Lopez Arbeloa, I.

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

Lopez Arbeloa, T.

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

Manenkov, A. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Maslyukov, A. P.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Matyushin, G. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Nechitailo, V. S.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Nihei, E.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

O’Connell, R. M.

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Popov, S.

Prokhorov, A. M.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Rahn, M. D.

Rothschild, M.

S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Ruderman, W.

S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Saito, T. T.

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Sasaki, K.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

Sastre, R.

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

R. Duchowicz, M. Ferrer, F. Amat-Guerri, R. Sastre, A. U. Acuña, “A proton-transfer dye laser pumped by the third harmonic of a Nd-YAG laser,” Opt. Commun. 104, 336–338 (1994).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Proton-transfer lasers from solid polimeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole groups,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Tagaya, A.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

Taylor, T. S.

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

Teramoto, S.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

Vyas, R.

Yamamoto, T.

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (2)

F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
[CrossRef]

A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

Opt. Commun. (2)

R. Duchowicz, M. Ferrer, F. Amat-Guerri, R. Sastre, A. U. Acuña, “A proton-transfer dye laser pumped by the third harmonic of a Nd-YAG laser,” Opt. Commun. 104, 336–338 (1994).
[CrossRef]

A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

Opt. Eng. (1)

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Opt. Lett. (1)

Opt. Quantum Electron (1)

F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Other (3)

J. A. Sell, ed., Photothermal Investigations of Solids and Fluids (Academic, New York, 1988).

T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE2289, 142–152 (1994).
[CrossRef]

J. Brandrup, E. H. Immergut, eds. Polymer Handbook (Willey, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. IF, interferential filter.

Fig. 2
Fig. 2

Geometry of the photothermal technique used in the experiment.

Fig. 3
Fig. 3

Time-dependent change in the deflected intensity of the probe beam for a 2 × 10-3 M Rh6G solution in ethylene glycol excited at 355 nm.

Fig. 4
Fig. 4

Time-dependent change in the deflected intensity of the probe beam for a polymeric matrix of 100% P(HEMA) containing 2 × 10-3 M Rh6G excited at 355 nm.

Fig. 5
Fig. 5

Thermal diffusivity values (D) for polymeric lasers made from Rh6G (c = 1.2 × 10-5 M) in a P(HEMA) matrix and their copolymers with MMA. Filled circles, 355-nm excitation; open squares, 532-nm excitation.

Fig. 6
Fig. 6

Thermal-diffusivity values (D) for polymeric lasers made from Rh6G (c = 2 × 10-3 M) in P(HEMA) matrices in which the rigidity was increased by the addition of various amounts of the cross linker EGDMA. Filled circles, 355-nm excitation; open squares, 532-nm excitation.

Tables (2)

Tables Icon

Table 1 Laser Parameters for Solid Solutions of Rh6G in Several P(HEMA–MMA) Copolymers

Tables Icon

Table 2 Laser Parameters for Solid Solutions of Rh6G (c = 1.5 × 10-3 M) in Various P(HEMA–EGDMA) Copolymersa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕiz, t=ϕi-1-A di-1a2+8Dt2×exp-2di-1a2+8Dtlmexpα2Dt-αz×erfc2αDt-z/4Dt1/21+ϕi-121/2, di=di-1+lm ϕi,

Metrics