Abstract

The millisecond heat dissipation of pump energy in polymeric, solid-state dye lasers has been studied with photothermal deflection spectroscopy (PTDS) to determine the contribution of that process to photodegradation of the active material. The samples were solutions of Rhodamine 6G in 2-hydroxyethyl methacrylate copolymerized with various amounts of methyl methacrylate or ethylene glycol dimethylacrylate to change the microstructure properties of the matrix. Values of the thermal diffusivity measured with PTDS were in the range 0.6–1.1 × 10-3 cm2 s-1 for all the compositions studied here. A comparison of these values with previous optical data on lasing efficiency and photostability for the same samples indicates that the macroscopic rate of thermal diffusion is not the key factor that limits the efficiency and stability of these lasers, at least for low pump repetition rates (<1 Hz).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription