Abstract

A sealed, compact mercury atomic-absorption resonance ionization imaging detector has been developed and evaluated. The sensitivity of the detector as well as its ability to form two-dimensional images has been demonstrated. Images of faint light (1000 photons) have been recorded by image summation. It is shown that one can obtain high-quality images with a spatial resolution of at least 130 µm by detecting the ionic component of the imaging signal. Distortion, more noise, and poorer spatial resolution were observed when the electron component of the signal was detected. We studied the influence of voltage on the cell electrodes to find the conditions for optimum signal-to-noise ratio.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Lewis, P. J. Treado, I. W. Levin, “A miniaturized, no-moving-parts Raman spectrometer,” Appl. Spectrosc. 47, 539–543 (1993).
    [CrossRef]
  2. H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy–acoustooptic and liquid-crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
    [CrossRef]
  3. K. A. Christensen, N. L. Bradley, M. D. Morris, R. V. Morrison, “Raman imaging using a tunable dual-stage liquid-crystal-Fabry–Perot-interferometer,” Appl. Spectrosc. 49, 1120–1125 (1995).
    [CrossRef]
  4. D. M. Pallister, A. Govil, M. D. Morris, W. S. Colburn, “Raman imaging system with dual holographic grating tunable filters,” Appl. Spectrosc. 48, 1015–1020 (1994).
    [CrossRef]
  5. C. J. de Grauw, C. Otto, J. Greve, “Line-scan Raman microspectrometry for biological applications,” Appl. Spectrosc. 51, 1607–1612 (1997).
    [CrossRef]
  6. J. Ma, D. Ben-Amotz, “Rapid micro-Raman imaging using fiber-bundle imaging compression,” Appl. Spectrosc. 51, 1845–1848 (1997).
    [CrossRef]
  7. G. J. Puppels, M. Ground, J. Greve, “Direct imaging Raman microscopic based on tunable wavelength excitation and narrowband emission detection,” Appl. Spectrosc. 47, 1256–1267 (1993).
    [CrossRef]
  8. O. I. Matveev, B. W. Smith, J. D. Winefordner, “Resonance ionization imaging detectors: basic characteristics and potential applications,” Appl. Opt. 36, 8833–8843 (1997).
    [CrossRef]
  9. O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a resonance ionization photon detector,” Spectrochim. Acta Part B 51, 563–567 (1996).
    [CrossRef]
  10. O. I. Matveev, B. W. Smith, J. D. Winefordner, “Narrow-band resonance ionization and fluorescence imaging in a mercury-vapor cell,” Opt. Lett. 23, 304–306 (1998).
    [CrossRef]
  11. O. I. Matveev, B. W. Smith, J. D. Winefordner, “A low pressure mercury vapor resonance ionization imaging detector,” Appl. Phys. Lett. 72, 1673–1675 (1998).
    [CrossRef]
  12. O. I. Matveev, B. W. Smith, J. D. Winefordner, “Two-dimensional resonance ionization imaging with a low pressure mercury atom vapor cell,” Opt. Commun. 156, 259–263 (1998).
    [CrossRef]
  13. A. A. Podshivalov, W. L. Clevenger, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A microchannel plate mercury atomic resonance ionization image detector,” Appl. Spectrosc. 54, 174–180 (2000).
    [CrossRef]
  14. A. A. Podshivalov, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A novel, efficiency scheme for laser resonance ionization of mercury,” Spectrochim. Acta 54, 1793–1799 (1999).
    [CrossRef]
  15. A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
    [CrossRef]

2000

A. A. Podshivalov, W. L. Clevenger, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A microchannel plate mercury atomic resonance ionization image detector,” Appl. Spectrosc. 54, 174–180 (2000).
[CrossRef]

1999

A. A. Podshivalov, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A novel, efficiency scheme for laser resonance ionization of mercury,” Spectrochim. Acta 54, 1793–1799 (1999).
[CrossRef]

A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
[CrossRef]

1998

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Narrow-band resonance ionization and fluorescence imaging in a mercury-vapor cell,” Opt. Lett. 23, 304–306 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “A low pressure mercury vapor resonance ionization imaging detector,” Appl. Phys. Lett. 72, 1673–1675 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Two-dimensional resonance ionization imaging with a low pressure mercury atom vapor cell,” Opt. Commun. 156, 259–263 (1998).
[CrossRef]

1997

1996

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a resonance ionization photon detector,” Spectrochim. Acta Part B 51, 563–567 (1996).
[CrossRef]

1995

1994

1993

Ben-Amotz, D.

Bradley, N. L.

Christensen, K. A.

Clevenger, W. L.

A. A. Podshivalov, W. L. Clevenger, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A microchannel plate mercury atomic resonance ionization image detector,” Appl. Spectrosc. 54, 174–180 (2000).
[CrossRef]

Colburn, W. S.

de Grauw, C. J.

Govil, A.

Greve, J.

Ground, M.

Hoyt, C. C.

Levin, I. W.

Lewis, E. N.

Ma, J.

Matveev, O. I.

A. A. Podshivalov, W. L. Clevenger, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A microchannel plate mercury atomic resonance ionization image detector,” Appl. Spectrosc. 54, 174–180 (2000).
[CrossRef]

A. A. Podshivalov, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A novel, efficiency scheme for laser resonance ionization of mercury,” Spectrochim. Acta 54, 1793–1799 (1999).
[CrossRef]

A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Two-dimensional resonance ionization imaging with a low pressure mercury atom vapor cell,” Opt. Commun. 156, 259–263 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Narrow-band resonance ionization and fluorescence imaging in a mercury-vapor cell,” Opt. Lett. 23, 304–306 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “A low pressure mercury vapor resonance ionization imaging detector,” Appl. Phys. Lett. 72, 1673–1675 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Resonance ionization imaging detectors: basic characteristics and potential applications,” Appl. Opt. 36, 8833–8843 (1997).
[CrossRef]

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a resonance ionization photon detector,” Spectrochim. Acta Part B 51, 563–567 (1996).
[CrossRef]

Morris, H. R.

Morris, M. D.

Morrison, R. V.

Omenetto, N.

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a resonance ionization photon detector,” Spectrochim. Acta Part B 51, 563–567 (1996).
[CrossRef]

Otto, C.

Pallister, D. M.

Podshivalov, A. A.

A. A. Podshivalov, W. L. Clevenger, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A microchannel plate mercury atomic resonance ionization image detector,” Appl. Spectrosc. 54, 174–180 (2000).
[CrossRef]

A. A. Podshivalov, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A novel, efficiency scheme for laser resonance ionization of mercury,” Spectrochim. Acta 54, 1793–1799 (1999).
[CrossRef]

A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
[CrossRef]

Puppels, G. J.

Shepard, M. R.

A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
[CrossRef]

Smith, B. W.

A. A. Podshivalov, W. L. Clevenger, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A microchannel plate mercury atomic resonance ionization image detector,” Appl. Spectrosc. 54, 174–180 (2000).
[CrossRef]

A. A. Podshivalov, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A novel, efficiency scheme for laser resonance ionization of mercury,” Spectrochim. Acta 54, 1793–1799 (1999).
[CrossRef]

A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Two-dimensional resonance ionization imaging with a low pressure mercury atom vapor cell,” Opt. Commun. 156, 259–263 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “A low pressure mercury vapor resonance ionization imaging detector,” Appl. Phys. Lett. 72, 1673–1675 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Narrow-band resonance ionization and fluorescence imaging in a mercury-vapor cell,” Opt. Lett. 23, 304–306 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Resonance ionization imaging detectors: basic characteristics and potential applications,” Appl. Opt. 36, 8833–8843 (1997).
[CrossRef]

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a resonance ionization photon detector,” Spectrochim. Acta Part B 51, 563–567 (1996).
[CrossRef]

Treado, P. J.

Winefordner, J. D.

A. A. Podshivalov, W. L. Clevenger, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A microchannel plate mercury atomic resonance ionization image detector,” Appl. Spectrosc. 54, 174–180 (2000).
[CrossRef]

A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
[CrossRef]

A. A. Podshivalov, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A novel, efficiency scheme for laser resonance ionization of mercury,” Spectrochim. Acta 54, 1793–1799 (1999).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Two-dimensional resonance ionization imaging with a low pressure mercury atom vapor cell,” Opt. Commun. 156, 259–263 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Narrow-band resonance ionization and fluorescence imaging in a mercury-vapor cell,” Opt. Lett. 23, 304–306 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “A low pressure mercury vapor resonance ionization imaging detector,” Appl. Phys. Lett. 72, 1673–1675 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Resonance ionization imaging detectors: basic characteristics and potential applications,” Appl. Opt. 36, 8833–8843 (1997).
[CrossRef]

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a resonance ionization photon detector,” Spectrochim. Acta Part B 51, 563–567 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

O. I. Matveev, B. W. Smith, J. D. Winefordner, “A low pressure mercury vapor resonance ionization imaging detector,” Appl. Phys. Lett. 72, 1673–1675 (1998).
[CrossRef]

Appl. Spectrosc.

J. Appl. Phys.

A. A. Podshivalov, M. R. Shepard, O. I. Matveev, B. W. Smith, J. D. Winefordner, “Ultrahigh-resolution, frequency-resolved resonance fluorescence imaging with a monoisotopic mercury atom cell,” J. Appl. Phys. 86, 5337–5341 (1999).
[CrossRef]

Opt. Commun.

O. I. Matveev, B. W. Smith, J. D. Winefordner, “Two-dimensional resonance ionization imaging with a low pressure mercury atom vapor cell,” Opt. Commun. 156, 259–263 (1998).
[CrossRef]

Opt. Lett.

Spectrochim. Acta

A. A. Podshivalov, O. I. Matveev, B. W. Smith, J. D. Winefordner, “A novel, efficiency scheme for laser resonance ionization of mercury,” Spectrochim. Acta 54, 1793–1799 (1999).
[CrossRef]

Spectrochim. Acta Part B

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a resonance ionization photon detector,” Spectrochim. Acta Part B 51, 563–567 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram of the RIID. Ions or electrons formed in the illumination region are accelerated toward a microchannel plate. The amplified electron image is accelerated toward a phosphor screen. H.V., high voltage.

Fig. 2
Fig. 2

Ionization scheme and partial energy-level diagram of Hg.

Fig. 3
Fig. 3

Typical RIID image obtained with the cross mask.

Fig. 4
Fig. 4

Schematic of the high-voltage (HV) divider. The input window is connected either to ground or to some point in the 120-MΩ resistor chain.

Fig. 5
Fig. 5

Schematic of the resonance ionization imaging detector; BE, beam expander; BS, beam splitter; M’s, mirrors; ICCD, intensified charge-coupled device. SHG, second-harmonic generator.

Fig. 6
Fig. 6

Image intensity versus power-supply voltage.

Fig. 7
Fig. 7

PSF’s of images obtained with (a) ion-imaging and (b) electron-imaging modes.

Fig. 8
Fig. 8

Representation of the peak width at 50% intensity and the change in distance at 10% intensity used to calculate spatial resolution.

Fig. 9
Fig. 9

Schematic of photoelectric measurements of the window and the MCP. The image formed at point A is from the photoelectric effect from the window; the image at point B is from the photoelectric effect from the MCP.

Fig. 10
Fig. 10

Spatial-resolving power versus MCP voltage.

Fig. 11
Fig. 11

Spatial-resolving power versus accelerating voltage on the phosphor screen.

Fig. 12
Fig. 12

Spectral response of the RIID as the imaging laser (λ1) is detuned from the center of the absorption line of Hg.

Metrics