Abstract

A near-infrared airborne-laser transmission model for thin cirrus clouds has been developed on the basis of the successive-order-of-scattering approach to account for multiple scattering by randomly and horizontally oriented ice crystals associated with an aircraft–target system. Direct transmission and transmission due to multiple scattering are formulated specifically for this geometric system, in which scattering and absorption associated with aerosols, water vapor, and air are accounted for. A number of sensitivity experiments have been performed for investigation of the effect of aircraft–target position, cirrus cloud optical depth, and ice crystal size on laser transmission for tactical applications. We show that transmission contributions produced by orders of scattering higher than 1 are small and can be neglected. The possibility of horizontal orientation of ice crystals can enhance transmission of laser beams in the aircraft–target geometry. Transmitted energy is strongly dependent on the horizontal distance between the aircraft and the target and on the cloud optical depth as well as on whether the cloud is above or below the aircraft.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription