Abstract

A concept, believed to be new, is introduced that enables the design and implementation of the path-history (PH) unit of Viterbi decoders with permutation networks. The rationale behind this concept is that the trace-back operation in the PH unit is nothing but propagation of a signal traveling from the rightmost end to the leftmost end in the trellis diagram controlled appropriately by the decision bits. On the basis of this observation, an optoelectronic PH unit, which consists of directional coupler switches and registers, is proposed. This unit can be treated as a direct implementation of the trellis diagram of the underlying convolutional code and carries out the trace-back operation by propagating a photonic signal rather than an electronic signal through a given permutation network controlled by the decision bits. Hence the speed is inherently faster than the equivalent electronic version. Here both unfolded and folded versions of optoelectronic PH units are proposed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1988).
  2. R. Cypher, C. B. Shung, “Generalized trace-back techniques for survivor memory management in the viterbi algorithm,” J. VLSI Signal Process. 5, 85–94 (1993).
  3. M.-B. Lin, A. Y. Oruc, “The design of an optoelectronic arithmetic processor based on permutation networks,” IEEE Trans. Comput. 46, 143–152 (1997).
  4. A. D. McAulay, Optical Computer Architectures: the Application of Optical Concepts to Next Generation Computers (Wiley, New York, 1991).
  5. M. Kondo, Y. Ohta, M. Fujiwara, M. Sakaguchi, “Integrated optical switch matrix for single-mode fiber networks,” IEEE J. Quantum Electron. QE-18, 1759–1765 (1982).
    [CrossRef]
  6. R. Ramaswami, K. N. Sivarajan, Optical Networks: a Practical Perspective (Morgan Kaufmann, San Francisco, Calif., 1998).
  7. H. S. Hinton, “Switching to photonics,” IEEE Spectrum 29, 42–45 (1992).
    [CrossRef]
  8. A. F. Benner, J. Bowman, T. Erkkila, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. Sauer, T. Soukup, “Digital optical counter using directional coupler switches,” Appl. Opt. 30, 4179–4189 (1991).
    [CrossRef] [PubMed]

1997 (1)

M.-B. Lin, A. Y. Oruc, “The design of an optoelectronic arithmetic processor based on permutation networks,” IEEE Trans. Comput. 46, 143–152 (1997).

1993 (1)

R. Cypher, C. B. Shung, “Generalized trace-back techniques for survivor memory management in the viterbi algorithm,” J. VLSI Signal Process. 5, 85–94 (1993).

1992 (1)

H. S. Hinton, “Switching to photonics,” IEEE Spectrum 29, 42–45 (1992).
[CrossRef]

1991 (1)

1982 (1)

M. Kondo, Y. Ohta, M. Fujiwara, M. Sakaguchi, “Integrated optical switch matrix for single-mode fiber networks,” IEEE J. Quantum Electron. QE-18, 1759–1765 (1982).
[CrossRef]

Benner, A. F.

Bowman, J.

Cypher, R.

R. Cypher, C. B. Shung, “Generalized trace-back techniques for survivor memory management in the viterbi algorithm,” J. VLSI Signal Process. 5, 85–94 (1993).

Erkkila, T.

Feuerstein, R. J.

Fujiwara, M.

M. Kondo, Y. Ohta, M. Fujiwara, M. Sakaguchi, “Integrated optical switch matrix for single-mode fiber networks,” IEEE J. Quantum Electron. QE-18, 1759–1765 (1982).
[CrossRef]

Heuring, V. P.

Hinton, H. S.

H. S. Hinton, “Switching to photonics,” IEEE Spectrum 29, 42–45 (1992).
[CrossRef]

Jordan, H. F.

Kondo, M.

M. Kondo, Y. Ohta, M. Fujiwara, M. Sakaguchi, “Integrated optical switch matrix for single-mode fiber networks,” IEEE J. Quantum Electron. QE-18, 1759–1765 (1982).
[CrossRef]

Lin, M.-B.

M.-B. Lin, A. Y. Oruc, “The design of an optoelectronic arithmetic processor based on permutation networks,” IEEE Trans. Comput. 46, 143–152 (1997).

McAulay, A. D.

A. D. McAulay, Optical Computer Architectures: the Application of Optical Concepts to Next Generation Computers (Wiley, New York, 1991).

Ohta, Y.

M. Kondo, Y. Ohta, M. Fujiwara, M. Sakaguchi, “Integrated optical switch matrix for single-mode fiber networks,” IEEE J. Quantum Electron. QE-18, 1759–1765 (1982).
[CrossRef]

Oruc, A. Y.

M.-B. Lin, A. Y. Oruc, “The design of an optoelectronic arithmetic processor based on permutation networks,” IEEE Trans. Comput. 46, 143–152 (1997).

Ramaswami, R.

R. Ramaswami, K. N. Sivarajan, Optical Networks: a Practical Perspective (Morgan Kaufmann, San Francisco, Calif., 1998).

Sakaguchi, M.

M. Kondo, Y. Ohta, M. Fujiwara, M. Sakaguchi, “Integrated optical switch matrix for single-mode fiber networks,” IEEE J. Quantum Electron. QE-18, 1759–1765 (1982).
[CrossRef]

Sauer, J.

Shung, C. B.

R. Cypher, C. B. Shung, “Generalized trace-back techniques for survivor memory management in the viterbi algorithm,” J. VLSI Signal Process. 5, 85–94 (1993).

Sivarajan, K. N.

R. Ramaswami, K. N. Sivarajan, Optical Networks: a Practical Perspective (Morgan Kaufmann, San Francisco, Calif., 1998).

Sklar, B.

B. Sklar, Digital Communications: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1988).

Soukup, T.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

M. Kondo, Y. Ohta, M. Fujiwara, M. Sakaguchi, “Integrated optical switch matrix for single-mode fiber networks,” IEEE J. Quantum Electron. QE-18, 1759–1765 (1982).
[CrossRef]

IEEE Spectrum (1)

H. S. Hinton, “Switching to photonics,” IEEE Spectrum 29, 42–45 (1992).
[CrossRef]

IEEE Trans. Comput. (1)

M.-B. Lin, A. Y. Oruc, “The design of an optoelectronic arithmetic processor based on permutation networks,” IEEE Trans. Comput. 46, 143–152 (1997).

J. VLSI Signal Process. (1)

R. Cypher, C. B. Shung, “Generalized trace-back techniques for survivor memory management in the viterbi algorithm,” J. VLSI Signal Process. 5, 85–94 (1993).

Other (3)

B. Sklar, Digital Communications: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1988).

A. D. McAulay, Optical Computer Architectures: the Application of Optical Concepts to Next Generation Computers (Wiley, New York, 1991).

R. Ramaswami, K. N. Sivarajan, Optical Networks: a Practical Perspective (Morgan Kaufmann, San Francisco, Calif., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Trellis diagram for a (3, 1, 2) convolutional code. [The underlying convolutional code is generated by G(D) = (1 + D, 1 + D 2, 1 + D + D 2).]

Fig. 2
Fig. 2

Operation of the trace-back PH unit of Viterbi decoders.

Fig. 3
Fig. 3

Directional coupler switch and its logic model.

Fig. 4
Fig. 4

Proposed optoelectronic PH unit for the convolutional code shown in Fig. 1.

Fig. 5
Fig. 5

Folded example of Fig. 4.

Metrics