Abstract

We introduce a technique called dual-spatial integration (DSI) that is used to isolate and enhance inclusions that differ only by their longitudinal placement within a scattering medium. DSI uses three different source–detector configurations to section a scattering medium into three longitudinal zones. This sectioning permits the extraction of structures close to surfaces and the enhancement of those structures located in the central part of the medium. Both the simulation and the experimental results indicate that DSI has potential interest for applications in biomedical imaging such as optical mammography.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
    [CrossRef] [PubMed]
  2. S. B. Colak, D. G. Papaioannou, G. W. Hooft, M. B. Van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. Van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
    [CrossRef] [PubMed]
  3. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  4. D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
    [CrossRef] [PubMed]
  5. M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 67–78 (1999).
    [CrossRef]
  6. Y. Painchaud, A. Mailloux, M. Morin, S. Verreault, P. Beaudry, “Time-domain optical imaging: discrimination between scattering and absorption,” Appl. Opt. 38, 3686–3693 (1999).
    [CrossRef]

1999 (1)

1998 (1)

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

1997 (2)

1989 (1)

Beaudry, P.

Y. Painchaud, A. Mailloux, M. Morin, S. Verreault, P. Beaudry, “Time-domain optical imaging: discrimination between scattering and absorption,” Appl. Opt. 38, 3686–3693 (1999).
[CrossRef]

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 67–78 (1999).
[CrossRef]

Chance, B.

Chatigny, S.

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 67–78 (1999).
[CrossRef]

Colak, S. B.

Contini, D.

Fantini, S.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

Franceschini, M. A.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

Hooft, G. W.

Jess, H.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

Kaschke, M.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

Mailloux, A.

Y. Painchaud, A. Mailloux, M. Morin, S. Verreault, P. Beaudry, “Time-domain optical imaging: discrimination between scattering and absorption,” Appl. Opt. 38, 3686–3693 (1999).
[CrossRef]

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 67–78 (1999).
[CrossRef]

Martelli, F.

Melissen, J. B. M.

Moesta, K. T.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

Morin, M.

Y. Painchaud, A. Mailloux, M. Morin, S. Verreault, P. Beaudry, “Time-domain optical imaging: discrimination between scattering and absorption,” Appl. Opt. 38, 3686–3693 (1999).
[CrossRef]

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 67–78 (1999).
[CrossRef]

Paasschens, J. C. J.

Painchaud, Y.

Y. Painchaud, A. Mailloux, M. Morin, S. Verreault, P. Beaudry, “Time-domain optical imaging: discrimination between scattering and absorption,” Appl. Opt. 38, 3686–3693 (1999).
[CrossRef]

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 67–78 (1999).
[CrossRef]

Papaioannou, D. G.

Patterson, M. S.

Schlag, P. M.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

Schomberg, H.

Totkas, S.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
[CrossRef] [PubMed]

Van Asten, N. A. A. J.

Van der Mark, M. B.

Verreault, S.

Wilson, B. C.

Zaccanti, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top view of DSI geometries and the simulated media used in the simulations: (a) configuration A, (b) configuration B, (c) configuration C. The graphic above each configuration qualitatively indicates the total transmitted photons generated in the simulation versus longitudinal position.

Fig. 2
Fig. 2

Spatial profile combinations used to enhance longitudinal discrimination. The origin of the abscissa refers to the position of the middle inclusion. P x refers to the spatial profiles of configuration A, B, or C.

Fig. 3
Fig. 3

Resultant combined images from a scans of a liquid phantom. The horizontal axis corresponds to the longitudinal placement of the inclusions. Spatial profile combinations: (a) P A - P B , (b) P A -P C , (c) P C +P B - P A , (d) P A .

Metrics